2.675 ODE No. 675
\[ y'(x)=\frac {a x^4+a e^x x^3+a x^3-x^2 y(x)^2-e^x x y(x)^2-x y(x)^2+y(x)}{x} \]
✓ Mathematica : cpu = 0.312866 (sec), leaf count = 48
DSolve[Derivative[1][y][x] == (a*x^3 + a*E^x*x^3 + a*x^4 + y[x] - x*y[x]^2 - E^x*x*y[x]^2 - x^2*y[x]^2)/x,y[x],x]
\[\left \{\left \{y(x)\to \sqrt {a} x \tanh \left (\frac {1}{6} \sqrt {a} \left (2 x^3+3 x^2+6 e^x x-6 e^x+6 c_1\right )\right )\right \}\right \}\]
✓ Maple : cpu = 0.076 (sec), leaf count = 37
dsolve(diff(y(x),x) = (y(x)+x^3*a*exp(x)+a*x^4+a*x^3-x*y(x)^2*exp(x)-y(x)^2*x^2-x*y(x)^2)/x,y(x))
\[y \left (x \right ) = \tanh \left (\frac {\left (\left (6 x -6\right ) {\mathrm e}^{x}+2 x^{3}+3 x^{2}+6 c_{1} \right ) \sqrt {a}}{6}\right ) x \sqrt {a}\]