2.666   ODE No. 666

\[ y'(x)=y(x) \left (x^3+x^2-\log (y(x))+1\right ) \]

Mathematica : cpu = 0.109909 (sec), leaf count = 29

DSolve[Derivative[1][y][x] == (1 + x^2 + x^3 - Log[y[x]])*y[x],y[x],x]
 
\[\left \{\left \{y(x)\to e^{x^3-2 x^2+4 x-c_1 e^{-x}-3}\right \}\right \}\]

Maple : cpu = 0.305 (sec), leaf count = 24

dsolve(diff(y(x),x) = (-ln(y(x))+1+x^2+x^3)*y(x),y(x))
 
\[y \left (x \right ) = {\mathrm e}^{{\mathrm e}^{-x} c_{1} +x^{3}-2 x^{2}+4 x -3}\]