2.655   ODE No. 655

\[ y'(x)=\frac {e^{-4 x/3} y(x)^3}{e^{-2 x/3} y(x)+1} \]

Mathematica : cpu = 9.48728 (sec), leaf count = 89

DSolve[Derivative[1][y][x] == y[x]^3/(E^((4*x)/3)*(1 + y[x]/E^((2*x)/3))),y[x],x]
 
\[\text {Solve}\left [\frac {3}{2} \log (y(x))+\frac {3}{28} \left (-\left (7+\sqrt {7}\right ) \log \left (-\sqrt {7} y(x)+y(x)+2 e^{2 x/3}\right )+\left (\sqrt {7}-7\right ) \log \left (\sqrt {7} y(x)+y(x)+2 e^{2 x/3}\right )+14 \log \left (e^{2 x/3}\right )\right )=c_1,y(x)\right ]\]

Maple : cpu = 1.234 (sec), leaf count = 66

dsolve(diff(y(x),x) = y(x)^3/(y(x)*exp(-2/3*x)+1)*exp(-4/3*x),y(x))
 
\[x +\frac {3 \sqrt {7}\, \operatorname {arctanh}\left (\frac {3 y \left (x \right ) \sqrt {7}\, {\mathrm e}^{-\frac {2 x}{3}}}{7}-\frac {\sqrt {7}}{7}\right )}{14}-\frac {3 \ln \left (3 y \left (x \right )^{2} {\mathrm e}^{-\frac {4 x}{3}}-2 y \left (x \right ) {\mathrm e}^{-\frac {2 x}{3}}-2\right )}{4}+\frac {3 \ln \left (y \left (x \right ) {\mathrm e}^{-\frac {2 x}{3}}\right )}{2}-c_{1} = 0\]