2.645   ODE No. 645

\[ y'(x)=y(x) (x-\log (y(x))) \]

Mathematica : cpu = 0.0677988 (sec), leaf count = 20

DSolve[Derivative[1][y][x] == (x - Log[y[x]])*y[x],y[x],x]
 
\[\left \{\left \{y(x)\to e^{x-e^{-x+c_1}-1}\right \}\right \}\]

Maple : cpu = 0.19 (sec), leaf count = 14

dsolve(diff(y(x),x) = (-ln(y(x))+x)*y(x),y(x))
 
\[y \left (x \right ) = {\mathrm e}^{{\mathrm e}^{-x} c_{1} -1+x}\]