2.642   ODE No. 642

\[ y'(x)=\frac {\left (4 a x-y(x)^2\right )^2}{y(x)} \]

Mathematica : cpu = 0.131907 (sec), leaf count = 105

DSolve[Derivative[1][y][x] == (4*a*x - y[x]^2)^2/y[x],y[x],x]
 
\[\left \{\left \{y(x)\to -\sqrt {4 a x-\sqrt {2} \sqrt {a} \tanh \left (\frac {2 \sqrt {2} a x-\sqrt {2} c_1}{\sqrt {a}}\right )}\right \},\left \{y(x)\to \sqrt {4 a x-\sqrt {2} \sqrt {a} \tanh \left (\frac {2 \sqrt {2} a x-\sqrt {2} c_1}{\sqrt {a}}\right )}\right \}\right \}\]

Maple : cpu = 0.307 (sec), leaf count = 281

dsolve(diff(y(x),x) = (-y(x)^2+4*a*x)^2/y(x),y(x))
 
\[y \left (x \right ) = \frac {2 \sqrt {\left (c_{1} \left (a x -\frac {\sqrt {2}\, \sqrt {a}}{4}\right ) {\mathrm e}^{2 x \left (\sqrt {2}\, \sqrt {a}-2 a x \right )}+{\mathrm e}^{-2 x \left (\sqrt {2}\, \sqrt {a}+2 a x \right )} \left (a x +\frac {\sqrt {2}\, \sqrt {a}}{4}\right )\right ) \left (c_{1} {\mathrm e}^{2 x \left (\sqrt {2}\, \sqrt {a}-2 a x \right )}+{\mathrm e}^{-2 x \left (\sqrt {2}\, \sqrt {a}+2 a x \right )}\right )}}{c_{1} {\mathrm e}^{2 x \left (\sqrt {2}\, \sqrt {a}-2 a x \right )}+{\mathrm e}^{-2 x \left (\sqrt {2}\, \sqrt {a}+2 a x \right )}}\]