2.6   ODE No. 6

\[ y'(x)+y(x) \cos (x)-\frac {1}{2} \sin (2 x)=0 \]

Mathematica : cpu = 0.0295942 (sec), leaf count = 18

DSolve[-1/2*Sin[2*x] + Cos[x]*y[x] + Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \sin (x)+c_1 e^{-\sin (x)}-1\right \}\right \}\]

Maple : cpu = 0.036 (sec), leaf count = 15

dsolve(diff(y(x),x)+y(x)*cos(x)-1/2*sin(2*x) = 0,y(x))
 
\[y \left (x \right ) = \sin \left (x \right )-1+{\mathrm e}^{-\sin \left (x \right )} c_{1}\]

Hand solution

\begin{equation} \frac {dy}{dx}+y\left ( x\right ) \cos \left ( x\right ) =\frac {1}{2}\sin \left ( 2x\right ) \tag {1}\end{equation}

Integrating factor \(\mu =e^{\int \cos dx}=e^{\sin \left ( x\right ) }\).   Therefore (1) becomes2

\[ \frac {d}{dx}\left ( e^{\sin \left ( x\right ) }y\left ( x\right ) \right ) =\frac {1}{2}e^{\sin \left ( x\right ) }\sin \left ( 2x\right ) \]

Integrating

\begin{align*} e^{\sin \left ( x\right ) }y\left ( x\right ) & =\frac {1}{2}\int e^{\sin \left ( x\right ) }\sin \left ( 2x\right ) +C\\ y\left ( x\right ) & =\frac {e^{-\sin \left ( x\right ) }}{2}\int e^{\sin \left ( x\right ) }\sin \left ( 2x\right ) +e^{-\sin \left ( x\right ) }C \end{align*}

But \(e^{\sin \left ( x\right ) }\sin \left ( 2x\right ) \) can be integrated by parts which gives \(e^{\sin \left ( x\right ) }\left ( -2+2\sin \left ( x\right ) \right ) \). Hence the above becomes

\begin{align*} y\left ( x\right ) & =\frac {e^{-\sin \left ( x\right ) }}{2}\left ( e^{\sin \left ( x\right ) }\left ( -2+2\sin \left ( x\right ) \right ) \right ) +e^{-\sin \left ( x\right ) }C\\ & =-1+\sin \left ( x\right ) +e^{-\sin \left ( x\right ) }C \end{align*}