2.597   ODE No. 597

\[ y'(x)=\frac {2 a}{x^2 \left (2 a F\left (\frac {x y(x)^2-4 a}{x}\right )-y(x)\right )} \]

Mathematica : cpu = 0.336169 (sec), leaf count = 130

DSolve[Derivative[1][y][x] == (2*a)/(x^2*(2*a*F[(-4*a + x*y[x]^2)/x] - y[x])),y[x],x]
 
\[\text {Solve}\left [\int _1^{y(x)}\left (-\frac {K[2]}{2 a F\left (\frac {x K[2]^2-4 a}{x}\right )}-\int _1^x\frac {2 K[2] F'\left (\frac {K[1] K[2]^2-4 a}{K[1]}\right )}{F\left (\frac {K[1] K[2]^2-4 a}{K[1]}\right )^2 K[1]^2}dK[1]+1\right )dK[2]+\int _1^x-\frac {1}{F\left (\frac {K[1] y(x)^2-4 a}{K[1]}\right ) K[1]^2}dK[1]=c_1,y(x)\right ]\]

Maple : cpu = 0.341 (sec), leaf count = 37

dsolve(diff(y(x),x) = 2*a/x^2/(-y(x)+2*F((x*y(x)^2-4*a)/x)*a),y(x))
 
\[-\frac {y \left (x \right )}{2 a}+\frac {\int _{}^{y \left (x \right )^{2}-\frac {4 a}{x}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a}}{8 a^{2}}-c_{1} = 0\]