2.591   ODE No. 591

\[ y'(x)=\frac {x F\left (\frac {a y(x)^2+b x^2}{a}\right )}{\sqrt {a} y(x)} \]

Mathematica : cpu = 0.53461 (sec), leaf count = 253

DSolve[Derivative[1][y][x] == (x*F[(b*x^2 + a*y[x]^2)/a])/(Sqrt[a]*y[x]),y[x],x]
 
\[\text {Solve}\left [\int _1^{y(x)}\left (-\frac {b K[2]}{b+\sqrt {a} F\left (\frac {b x^2+a K[2]^2}{a}\right )}-\int _1^x\left (\frac {2 b K[1] K[2] F'\left (\frac {b K[1]^2+a K[2]^2}{a}\right )}{\sqrt {a} \left (b+\sqrt {a} F\left (\frac {b K[1]^2+a K[2]^2}{a}\right )\right )}-\frac {2 b F\left (\frac {b K[1]^2+a K[2]^2}{a}\right ) K[1] K[2] F'\left (\frac {b K[1]^2+a K[2]^2}{a}\right )}{\left (b+\sqrt {a} F\left (\frac {b K[1]^2+a K[2]^2}{a}\right )\right )^2}\right )dK[1]\right )dK[2]+\int _1^x\frac {b F\left (\frac {b K[1]^2+a y(x)^2}{a}\right ) K[1]}{\sqrt {a} \left (b+\sqrt {a} F\left (\frac {b K[1]^2+a y(x)^2}{a}\right )\right )}dK[1]=c_1,y(x)\right ]\]

Maple : cpu = 0.268 (sec), leaf count = 108

dsolve(diff(y(x),x) = F((a*y(x)^2+b*x^2)/a)*x/a^(1/2)/y(x),y(x))
 
\[y \left (x \right ) = \frac {\sqrt {a \left (-b \,x^{2}+\operatorname {RootOf}\left (\left (\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right ) a +b \sqrt {a}}d \textit {\_a} \right ) b \,a^{{3}/{2}}-b \,x^{2}+2 c_{1} a \right ) a \right )}}{a}\]