2.577   ODE No. 577

\[ y'(x)=F\left (\frac {y(x)}{a+x}\right ) \]

Mathematica : cpu = 0.302632 (sec), leaf count = 243

DSolve[Derivative[1][y][x] == F[y[x]/(a + x)],y[x],x]
 
\[\text {Solve}\left [\int _1^{y(x)}\left (\frac {1}{-a F\left (\frac {K[2]}{a+x}\right )-x F\left (\frac {K[2]}{a+x}\right )+K[2]}-\int _1^x\left (\frac {F'\left (\frac {K[2]}{a+K[1]}\right )}{(a+K[1]) \left (a F\left (\frac {K[2]}{a+K[1]}\right )+K[1] F\left (\frac {K[2]}{a+K[1]}\right )-K[2]\right )}-\frac {F\left (\frac {K[2]}{a+K[1]}\right ) \left (\frac {a F'\left (\frac {K[2]}{a+K[1]}\right )}{a+K[1]}+\frac {K[1] F'\left (\frac {K[2]}{a+K[1]}\right )}{a+K[1]}-1\right )}{\left (a F\left (\frac {K[2]}{a+K[1]}\right )+K[1] F\left (\frac {K[2]}{a+K[1]}\right )-K[2]\right )^2}\right )dK[1]\right )dK[2]+\int _1^x\frac {F\left (\frac {y(x)}{a+K[1]}\right )}{a F\left (\frac {y(x)}{a+K[1]}\right )+K[1] F\left (\frac {y(x)}{a+K[1]}\right )-y(x)}dK[1]=c_1,y(x)\right ]\]

Maple : cpu = 0.039 (sec), leaf count = 28

dsolve(diff(y(x),x) = F(y(x)/(x+a)),y(x))
 
\[y \left (x \right ) = -\operatorname {RootOf}\left (\int _{}^{\textit {\_Z}}\frac {1}{F \left (-\textit {\_a} \right )+\textit {\_a}}d \textit {\_a} +\ln \left (x +a \right )+c_{1} \right ) \left (x +a \right )\]