2.571 ODE No. 571
\[ a x^n f\left (y'(x)\right )+x y'(x)-y(x)=0 \]
✓ Mathematica : cpu = 0.120291 (sec), leaf count = 124
DSolve[a*x^n*f[Derivative[1][y][x]] - y[x] + x*Derivative[1][y][x] == 0,y[x],x]
\[\text {Solve}\left [\left \{y(x)=a x^n f(K[1])+x K[1],x=\left (n f(K[1])^{\frac {1}{n}-1} \int _1^{K[1]}-\frac {f(K[2])^{\frac {n-1}{n}-1}}{a n}dK[2]-f(K[1])^{\frac {1}{n}-1} \int _1^{K[1]}-\frac {f(K[2])^{\frac {n-1}{n}-1}}{a n}dK[2]+c_1 f(K[1])^{\frac {1}{n}-1}\right ){}^{\frac {1}{n-1}}\right \},\{y(x),K[1]\}\right ]\]
✓ Maple : cpu = 1.09 (sec), leaf count = 169
dsolve(a*x^n*f(diff(y(x),x))+x*diff(y(x),x)-y(x)=0,y(x))
\[\left [y \left (\textit {\_T} \right ) = a {\left ({\left (\frac {\left (1-n \right ) \left (\int f \left (\textit {\_T} \right )^{-\frac {1}{n}}d \textit {\_T} \right )+c_{1} a n}{a n f \left (\textit {\_T} \right )}\right )}^{\frac {1}{n -1}} f \left (\textit {\_T} \right )^{\frac {1}{n \left (n -1\right )}}\right )}^{n} f \left (\textit {\_T} \right )+\textit {\_T} {\left (\frac {\left (1-n \right ) \left (\int f \left (\textit {\_T} \right )^{-\frac {1}{n}}d \textit {\_T} \right )+c_{1} a n}{a n f \left (\textit {\_T} \right )}\right )}^{\frac {1}{n -1}} f \left (\textit {\_T} \right )^{\frac {1}{n \left (n -1\right )}}, x \left (\textit {\_T} \right ) = {\left (\frac {\left (1-n \right ) \left (\int f \left (\textit {\_T} \right )^{-\frac {1}{n}}d \textit {\_T} \right )+c_{1} a n}{a n f \left (\textit {\_T} \right )}\right )}^{\frac {1}{n -1}} f \left (\textit {\_T} \right )^{\frac {1}{n \left (n -1\right )}}\right ]\]