2.561   ODE No. 561

\[ f\left (x^2+y(x)^2\right ) \sqrt {y'(x)^2+1}-x y'(x)+y(x)=0 \]

Mathematica : cpu = 2.07753 (sec), leaf count = 2138

DSolve[y[x] - x*Derivative[1][y][x] + f[x^2 + y[x]^2]*Sqrt[1 + Derivative[1][y][x]^2] == 0,y[x],x]
 
\[\left \{\text {Solve}\left [\int _1^x\left (\frac {\sqrt {f\left (K[1]^2+y(x)^2\right )^2 \left (-f\left (K[1]^2+y(x)^2\right )^2+K[1]^2+y(x)^2\right )} K[1]}{f\left (K[1]^2+y(x)^2\right )^2 \left (K[1]^2+y(x)^2\right )}-\frac {\sqrt {f\left (K[1]^2+y(x)^2\right )^2 \left (-f\left (K[1]^2+y(x)^2\right )^2+K[1]^2+y(x)^2\right )} K[1]}{f\left (K[1]^2+y(x)^2\right )^2 \left (-f\left (K[1]^2+y(x)^2\right )^2+K[1]^2+y(x)^2\right )}+\frac {y(x)}{K[1]^2+y(x)^2}\right )dK[1]+\int _1^{y(x)}\left (-\frac {x}{x^2+K[2]^2}-\int _1^x\left (-\frac {2 K[2]^2}{\left (K[1]^2+K[2]^2\right )^2}-\frac {4 K[1] \sqrt {f\left (K[1]^2+K[2]^2\right )^2 \left (-f\left (K[1]^2+K[2]^2\right )^2+K[1]^2+K[2]^2\right )} f'\left (K[1]^2+K[2]^2\right ) K[2]}{f\left (K[1]^2+K[2]^2\right )^3 \left (K[1]^2+K[2]^2\right )}+\frac {4 K[1] \sqrt {f\left (K[1]^2+K[2]^2\right )^2 \left (-f\left (K[1]^2+K[2]^2\right )^2+K[1]^2+K[2]^2\right )} f'\left (K[1]^2+K[2]^2\right ) K[2]}{f\left (K[1]^2+K[2]^2\right )^3 \left (-f\left (K[1]^2+K[2]^2\right )^2+K[1]^2+K[2]^2\right )}-\frac {2 K[1] \sqrt {f\left (K[1]^2+K[2]^2\right )^2 \left (-f\left (K[1]^2+K[2]^2\right )^2+K[1]^2+K[2]^2\right )} K[2]}{f\left (K[1]^2+K[2]^2\right )^2 \left (K[1]^2+K[2]^2\right )^2}+\frac {K[1] \sqrt {f\left (K[1]^2+K[2]^2\right )^2 \left (-f\left (K[1]^2+K[2]^2\right )^2+K[1]^2+K[2]^2\right )} \left (2 K[2]-4 f\left (K[1]^2+K[2]^2\right ) K[2] f'\left (K[1]^2+K[2]^2\right )\right )}{f\left (K[1]^2+K[2]^2\right )^2 \left (-f\left (K[1]^2+K[2]^2\right )^2+K[1]^2+K[2]^2\right )^2}+\frac {K[1] \left (\left (2 K[2]-4 f\left (K[1]^2+K[2]^2\right ) K[2] f'\left (K[1]^2+K[2]^2\right )\right ) f\left (K[1]^2+K[2]^2\right )^2+4 K[2] \left (-f\left (K[1]^2+K[2]^2\right )^2+K[1]^2+K[2]^2\right ) f'\left (K[1]^2+K[2]^2\right ) f\left (K[1]^2+K[2]^2\right )\right )}{2 f\left (K[1]^2+K[2]^2\right )^2 \left (K[1]^2+K[2]^2\right ) \sqrt {f\left (K[1]^2+K[2]^2\right )^2 \left (-f\left (K[1]^2+K[2]^2\right )^2+K[1]^2+K[2]^2\right )}}-\frac {K[1] \left (\left (2 K[2]-4 f\left (K[1]^2+K[2]^2\right ) K[2] f'\left (K[1]^2+K[2]^2\right )\right ) f\left (K[1]^2+K[2]^2\right )^2+4 K[2] \left (-f\left (K[1]^2+K[2]^2\right )^2+K[1]^2+K[2]^2\right ) f'\left (K[1]^2+K[2]^2\right ) f\left (K[1]^2+K[2]^2\right )\right )}{2 f\left (K[1]^2+K[2]^2\right )^2 \left (-f\left (K[1]^2+K[2]^2\right )^2+K[1]^2+K[2]^2\right ) \sqrt {f\left (K[1]^2+K[2]^2\right )^2 \left (-f\left (K[1]^2+K[2]^2\right )^2+K[1]^2+K[2]^2\right )}}+\frac {1}{K[1]^2+K[2]^2}\right )dK[1]+\frac {K[2] \sqrt {f\left (x^2+K[2]^2\right )^2 \left (x^2-f\left (x^2+K[2]^2\right )^2+K[2]^2\right )}}{f\left (x^2+K[2]^2\right )^2 \left (x^2+K[2]^2\right )}-\frac {K[2] \sqrt {f\left (x^2+K[2]^2\right )^2 \left (x^2-f\left (x^2+K[2]^2\right )^2+K[2]^2\right )}}{f\left (x^2+K[2]^2\right )^2 \left (x^2-f\left (x^2+K[2]^2\right )^2+K[2]^2\right )}\right )dK[2]=c_1,y(x)\right ],\text {Solve}\left [\int _1^x\left (-\frac {\sqrt {f\left (K[3]^2+y(x)^2\right )^2 \left (-f\left (K[3]^2+y(x)^2\right )^2+K[3]^2+y(x)^2\right )} K[3]}{f\left (K[3]^2+y(x)^2\right )^2 \left (K[3]^2+y(x)^2\right )}+\frac {\sqrt {f\left (K[3]^2+y(x)^2\right )^2 \left (-f\left (K[3]^2+y(x)^2\right )^2+K[3]^2+y(x)^2\right )} K[3]}{f\left (K[3]^2+y(x)^2\right )^2 \left (-f\left (K[3]^2+y(x)^2\right )^2+K[3]^2+y(x)^2\right )}+\frac {y(x)}{K[3]^2+y(x)^2}\right )dK[3]+\int _1^{y(x)}\left (-\frac {x}{x^2+K[4]^2}-\int _1^x\left (-\frac {2 K[4]^2}{\left (K[3]^2+K[4]^2\right )^2}+\frac {4 K[3] \sqrt {f\left (K[3]^2+K[4]^2\right )^2 \left (-f\left (K[3]^2+K[4]^2\right )^2+K[3]^2+K[4]^2\right )} f'\left (K[3]^2+K[4]^2\right ) K[4]}{f\left (K[3]^2+K[4]^2\right )^3 \left (K[3]^2+K[4]^2\right )}-\frac {4 K[3] \sqrt {f\left (K[3]^2+K[4]^2\right )^2 \left (-f\left (K[3]^2+K[4]^2\right )^2+K[3]^2+K[4]^2\right )} f'\left (K[3]^2+K[4]^2\right ) K[4]}{f\left (K[3]^2+K[4]^2\right )^3 \left (-f\left (K[3]^2+K[4]^2\right )^2+K[3]^2+K[4]^2\right )}+\frac {2 K[3] \sqrt {f\left (K[3]^2+K[4]^2\right )^2 \left (-f\left (K[3]^2+K[4]^2\right )^2+K[3]^2+K[4]^2\right )} K[4]}{f\left (K[3]^2+K[4]^2\right )^2 \left (K[3]^2+K[4]^2\right )^2}-\frac {K[3] \sqrt {f\left (K[3]^2+K[4]^2\right )^2 \left (-f\left (K[3]^2+K[4]^2\right )^2+K[3]^2+K[4]^2\right )} \left (2 K[4]-4 f\left (K[3]^2+K[4]^2\right ) K[4] f'\left (K[3]^2+K[4]^2\right )\right )}{f\left (K[3]^2+K[4]^2\right )^2 \left (-f\left (K[3]^2+K[4]^2\right )^2+K[3]^2+K[4]^2\right )^2}-\frac {K[3] \left (\left (2 K[4]-4 f\left (K[3]^2+K[4]^2\right ) K[4] f'\left (K[3]^2+K[4]^2\right )\right ) f\left (K[3]^2+K[4]^2\right )^2+4 K[4] \left (-f\left (K[3]^2+K[4]^2\right )^2+K[3]^2+K[4]^2\right ) f'\left (K[3]^2+K[4]^2\right ) f\left (K[3]^2+K[4]^2\right )\right )}{2 f\left (K[3]^2+K[4]^2\right )^2 \left (K[3]^2+K[4]^2\right ) \sqrt {f\left (K[3]^2+K[4]^2\right )^2 \left (-f\left (K[3]^2+K[4]^2\right )^2+K[3]^2+K[4]^2\right )}}+\frac {K[3] \left (\left (2 K[4]-4 f\left (K[3]^2+K[4]^2\right ) K[4] f'\left (K[3]^2+K[4]^2\right )\right ) f\left (K[3]^2+K[4]^2\right )^2+4 K[4] \left (-f\left (K[3]^2+K[4]^2\right )^2+K[3]^2+K[4]^2\right ) f'\left (K[3]^2+K[4]^2\right ) f\left (K[3]^2+K[4]^2\right )\right )}{2 f\left (K[3]^2+K[4]^2\right )^2 \left (-f\left (K[3]^2+K[4]^2\right )^2+K[3]^2+K[4]^2\right ) \sqrt {f\left (K[3]^2+K[4]^2\right )^2 \left (-f\left (K[3]^2+K[4]^2\right )^2+K[3]^2+K[4]^2\right )}}+\frac {1}{K[3]^2+K[4]^2}\right )dK[3]-\frac {K[4] \sqrt {f\left (x^2+K[4]^2\right )^2 \left (x^2-f\left (x^2+K[4]^2\right )^2+K[4]^2\right )}}{f\left (x^2+K[4]^2\right )^2 \left (x^2+K[4]^2\right )}+\frac {K[4] \sqrt {f\left (x^2+K[4]^2\right )^2 \left (x^2-f\left (x^2+K[4]^2\right )^2+K[4]^2\right )}}{f\left (x^2+K[4]^2\right )^2 \left (x^2-f\left (x^2+K[4]^2\right )^2+K[4]^2\right )}\right )dK[4]=c_1,y(x)\right ]\right \}\]

Maple : cpu = 2.346 (sec), leaf count = 50

dsolve(f(y(x)^2+x^2)*(diff(y(x),x)^2+1)^(1/2)-x*diff(y(x),x)+y(x)=0,y(x))
 
\[y \left (x \right ) = \frac {x}{\tan \left (\operatorname {RootOf}\left (-2 \textit {\_Z} +\int _{}^{\frac {x^{2} \left (\tan \left (\textit {\_Z} \right )^{2}+1\right )}{\tan \left (\textit {\_Z} \right )^{2}}}\frac {f \left (\textit {\_a} \right )}{\sqrt {-f \left (\textit {\_a} \right )^{2}+\textit {\_a}}\, \textit {\_a}}d \textit {\_a} +2 c_{1} \right )\right )}\]