2.548 ODE No. 548
\[ y'(x)^6-(y(x)-a)^4 (y(x)-b)^3=0 \]
✓ Mathematica : cpu = 0.733067 (sec), leaf count = 479
DSolve[-((-a + y[x])^4*(-b + y[x])^3) + Derivative[1][y][x]^6 == 0,y[x],x]
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ][c_1-i x]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ][i x+c_1]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ]\left [-\sqrt [6]{-1} x+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ]\left [\sqrt [6]{-1} x+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ]\left [-(-1)^{5/6} x+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {3 \sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};\frac {a-\text {$\#$1}}{a-b}\right )}{\sqrt {b-\text {$\#$1}}}\& \right ]\left [(-1)^{5/6} x+c_1\right ]\right \}\right \}\]
✓ Maple : cpu = 0.439 (sec), leaf count = 250
dsolve(diff(y(x),x)^6-(y(x)-a)^4*(y(x)-b)^3=0,y(x))
\[y \left (x \right ) = a\]