2.539   ODE No. 539

\[ \sin (x) y'(x)^3-y'(x)^2 \left (y(x) \sin (x)-\cos ^2(x)\right )-y'(x) \left (y(x) \cos ^2(x)+\sin (x)\right )+y(x) \sin (x)=0 \]

Mathematica : cpu = 0.0203852 (sec), leaf count = 32

DSolve[Sin[x]*y[x] - (Sin[x] + Cos[x]^2*y[x])*Derivative[1][y][x] - (-Cos[x]^2 + Sin[x]*y[x])*Derivative[1][y][x]^2 + Sin[x]*Derivative[1][y][x]^3 == 0,y[x],x]
 
\[\left \{\left \{y(x)\to c_1 e^x\right \},\left \{y(x)\to \tanh ^{-1}(\cos (x))+c_1\right \},\{y(x)\to -\cos (x)+c_1\}\right \}\]

Maple : cpu = 0.066 (sec), leaf count = 32

dsolve(diff(y(x),x)^3*sin(x)-(y(x)*sin(x)-cos(x)^2)*diff(y(x),x)^2-(y(x)*cos(x)^2+sin(x))*diff(y(x),x)+y(x)*sin(x)=0,y(x))
 
\[y \left (x \right ) = c_{1} {\mathrm e}^{x}\]