2.532 ODE No. 532
\[ a y'(x)^3+b y'(x)^2+c y'(x)-d-y(x)=0 \]
✓ Mathematica : cpu = 0.0222637 (sec), leaf count = 1057
DSolve[-d - y[x] + c*Derivative[1][y][x] + b*Derivative[1][y][x]^2 + a*Derivative[1][y][x]^3 == 0,y[x],x]
\[\left \{\left \{y(x)\to \text {InverseFunction}\left [\int \frac {\sqrt [3]{2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}}}{2 \sqrt [3]{2} b^2+2 \sqrt [3]{2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}} b-6 \sqrt [3]{2} a c+2^{2/3} \left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}\right )^{2/3}}d\text {$\#$1}\& \right ]\left [c_1-\frac {x}{6 a}\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [\int \frac {\sqrt [3]{2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}}}{2 i \sqrt [3]{2} \sqrt {3} b^2+2 \sqrt [3]{2} b^2-4 \sqrt [3]{2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}} b-6 i \sqrt [3]{2} \sqrt {3} a c-6 \sqrt [3]{2} a c-i 2^{2/3} \sqrt {3} \left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}\right )^{2/3}+2^{2/3} \left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}\right )^{2/3}}d\text {$\#$1}\& \right ]\left [\frac {x}{12 a}+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [\int \frac {\sqrt [3]{2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}}}{-2 i \sqrt [3]{2} \sqrt {3} b^2+2 \sqrt [3]{2} b^2-4 \sqrt [3]{2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}} b+6 i \sqrt [3]{2} \sqrt {3} a c-6 \sqrt [3]{2} a c+i 2^{2/3} \sqrt {3} \left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}\right )^{2/3}+2^{2/3} \left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}+\sqrt {4 \left (3 a c-b^2\right )^3+\left (2 b^3-9 a c b-27 a^2 d-27 a^2 \text {$\#$1}\right )^2}\right )^{2/3}}d\text {$\#$1}\& \right ]\left [\frac {x}{12 a}+c_1\right ]\right \}\right \}\]
✓ Maple : cpu = 0.356 (sec), leaf count = 944
dsolve(a*diff(y(x),x)^3+b*diff(y(x),x)^2+c*diff(y(x),x)-y(x)-d=0,y(x))
\[x -\left (\int _{}^{y \left (x \right )}-\frac {3 \,6^{{1}/{3}} a 27^{{1}/{3}} {\left (\left (\frac {\sqrt {27 \left (d +\textit {\_a} \right )^{2} a^{2}+18 \left (\left (d +\textit {\_a} \right ) b +\frac {2 c^{2}}{9}\right ) c a +\left (-4 d -4 \textit {\_a} \right ) b^{3}-b^{2} c^{2}}\, a}{3}+\left (a^{2} \left (d +\textit {\_a} \right )+\frac {a b c}{3}-\frac {2 b^{3}}{27}\right ) \sqrt {3}\right ) \sqrt {3}\right )}^{{1}/{3}}}{3 \,6^{{2}/{3}} a c -6^{{2}/{3}} b^{2}+6^{{1}/{3}} 27^{{1}/{3}} {\left (\left (\frac {\sqrt {27 \left (d +\textit {\_a} \right )^{2} a^{2}+18 \left (\left (d +\textit {\_a} \right ) b +\frac {2 c^{2}}{9}\right ) c a +\left (-4 d -4 \textit {\_a} \right ) b^{3}-b^{2} c^{2}}\, a}{3}+\left (a^{2} \left (d +\textit {\_a} \right )+\frac {a b c}{3}-\frac {2 b^{3}}{27}\right ) \sqrt {3}\right ) \sqrt {3}\right )}^{{1}/{3}} b -27^{{2}/{3}} {\left (\left (\frac {\sqrt {27 \left (d +\textit {\_a} \right )^{2} a^{2}+18 \left (\left (d +\textit {\_a} \right ) b +\frac {2 c^{2}}{9}\right ) c a +\left (-4 d -4 \textit {\_a} \right ) b^{3}-b^{2} c^{2}}\, a}{3}+\left (a^{2} \left (d +\textit {\_a} \right )+\frac {a b c}{3}-\frac {2 b^{3}}{27}\right ) \sqrt {3}\right ) \sqrt {3}\right )}^{{2}/{3}}}d \textit {\_a} \right )-c_{1} = 0\]