2.511 ODE No. 511
\[ \left (a^2 \sqrt {x^2+y(x)^2}-x^2\right ) y'(x)^2+a^2 \sqrt {x^2+y(x)^2}+2 x y(x) y'(x)-y(x)^2=0 \]
✓ Mathematica : cpu = 22.2426 (sec), leaf count = 229
DSolve[-y[x]^2 + a^2*Sqrt[x^2 + y[x]^2] + 2*x*y[x]*Derivative[1][y][x] + (-x^2 + a^2*Sqrt[x^2 + y[x]^2])*Derivative[1][y][x]^2 == 0,y[x],x]
\[\left \{\text {Solve}\left [\tan ^{-1}\left (\frac {x}{y(x)}\right )-\frac {2 \sqrt {a^2 \left (x^2+y(x)^2\right ) \left (\sqrt {x^2+y(x)^2}-a^2\right )} \tan ^{-1}\left (\frac {\sqrt {\sqrt {x^2+y(x)^2}-a^2}}{a}\right )}{a \sqrt {x^2+y(x)^2} \sqrt {\sqrt {x^2+y(x)^2}-a^2}}=c_1,y(x)\right ],\text {Solve}\left [\frac {2 \sqrt {a^2 \left (x^2+y(x)^2\right ) \left (\sqrt {x^2+y(x)^2}-a^2\right )} \tan ^{-1}\left (\frac {\sqrt {\sqrt {x^2+y(x)^2}-a^2}}{a}\right )}{a \sqrt {x^2+y(x)^2} \sqrt {\sqrt {x^2+y(x)^2}-a^2}}+\tan ^{-1}\left (\frac {x}{y(x)}\right )=c_1,y(x)\right ]\right \}\]
✓ Maple : cpu = 10.197 (sec), leaf count = 199
dsolve((a^2*(y(x)^2+x^2)^(1/2)-x^2)*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+a^2*(y(x)^2+x^2)^(1/2)-y(x)^2=0,y(x))
\[\arctan \left (\frac {x}{y \left (x \right )}\right )-\frac {2 \sqrt {\left (-a^{2}+\sqrt {y \left (x \right )^{2}+x^{2}}\right ) \left (y \left (x \right )^{2}+x^{2}\right ) a^{2}}\, \arctan \left (\frac {\sqrt {-a^{2}+\sqrt {y \left (x \right )^{2}+x^{2}}}}{a}\right )}{a \sqrt {y \left (x \right )^{2}+x^{2}}\, \sqrt {-a^{2}+\sqrt {y \left (x \right )^{2}+x^{2}}}}-c_{1} = 0\]