2.488 ODE No. 488
\[ 4 a^2-4 a y(x) y'(x)-4 a x+y(x)^2 y'(x)^2+y(x)^2=0 \]
✓ Mathematica : cpu = 0.212425 (sec), leaf count = 85
DSolve[4*a^2 - 4*a*x + y[x]^2 - 4*a*y[x]*Derivative[1][y][x] + y[x]^2*Derivative[1][y][x]^2 == 0,y[x],x]
\[\left \{\left \{y(x)\to -\frac {\sqrt {16 a^3 x-4 a^2 x^2-4 a c_1 x-c_1{}^2}}{2 a}\right \},\left \{y(x)\to \frac {\sqrt {16 a^3 x-4 a^2 x^2-4 a c_1 x-c_1{}^2}}{2 a}\right \}\right \}\]
✓ Maple : cpu = 0.376 (sec), leaf count = 72
dsolve(y(x)^2*diff(y(x),x)^2-4*a*y(x)*diff(y(x),x)+y(x)^2-4*a*x+4*a^2 = 0,y(x))
\[y \left (x \right ) = -2 \sqrt {a x}\]