2.476 ODE No. 476
\[ 4 x^3 y'(x)-4 x^2 y(x)+9 y(x) y'(x)^2=0 \]
✓ Mathematica : cpu = 0.411055 (sec), leaf count = 143
DSolve[-4*x^2*y[x] + 4*x^3*Derivative[1][y][x] + 9*y[x]*Derivative[1][y][x]^2 == 0,y[x],x]
\[\left \{\text {Solve}\left [\frac {1}{2} \log (y(x))-\frac {\sqrt {x^6+9 x^2 y(x)^2} \tanh ^{-1}\left (\frac {\sqrt {x^4+9 y(x)^2}}{x^2}\right )}{2 x \sqrt {x^4+9 y(x)^2}}=c_1,y(x)\right ],\text {Solve}\left [\frac {\sqrt {x^6+9 x^2 y(x)^2} \tanh ^{-1}\left (\frac {\sqrt {x^4+9 y(x)^2}}{x^2}\right )}{2 x \sqrt {x^4+9 y(x)^2}}+\frac {1}{2} \log (y(x))=c_1,y(x)\right ]\right \}\]
✓ Maple : cpu = 0.388 (sec), leaf count = 87
dsolve(9*y(x)*diff(y(x),x)^2+4*x^3*diff(y(x),x)-4*x^2*y(x) = 0,y(x))
\[y \left (x \right ) = -\frac {i x^{2}}{3}\]