2.472   ODE No. 472

\[ (y(x)+x) y'(x)^2+2 x y'(x)-y(x)=0 \]

Mathematica : cpu = 0.271835 (sec), leaf count = 127

DSolve[-y[x] + 2*x*Derivative[1][y][x] + (x + y[x])*Derivative[1][y][x]^2 == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \frac {1}{3} \left (-2 \sqrt {e^{2 c_1}-3 e^{c_1} x}-e^{c_1}\right )\right \},\left \{y(x)\to \frac {1}{3} \left (2 \sqrt {e^{2 c_1}-3 e^{c_1} x}-e^{c_1}\right )\right \},\left \{y(x)\to e^{c_1}-2 \sqrt {e^{c_1} x+e^{2 c_1}}\right \},\left \{y(x)\to 2 \sqrt {e^{c_1} x+e^{2 c_1}}+e^{c_1}\right \}\right \}\]

Maple : cpu = 0.627 (sec), leaf count = 121

dsolve((y(x)+x)*diff(y(x),x)^2+2*x*diff(y(x),x)-y(x) = 0,y(x))
 
\[y \left (x \right ) = -\frac {\left (1+i \sqrt {3}\right ) x}{2}\]