2.453   ODE No. 453

\[ \left (a^2-1\right ) x^2 y'(x)^2+a^2 x^2+2 x y(x) y'(x)-y(x)^2=0 \]

Mathematica : cpu = 0.900573 (sec), leaf count = 223

DSolve[a^2*x^2 - y[x]^2 + 2*x*y[x]*Derivative[1][y][x] + (-1 + a^2)*x^2*Derivative[1][y][x]^2 == 0,y[x],x]
 
\[\left \{\text {Solve}\left [\frac {2 i \tan ^{-1}\left (\frac {y(x)}{x \sqrt {a^2-\frac {y(x)^2}{x^2}-1}}\right )-2 i a \tan ^{-1}\left (\frac {a y(x)}{x \sqrt {a^2-\frac {y(x)^2}{x^2}-1}}\right )+a \log \left (\frac {y(x)^2}{x^2}+1\right )}{2 a^2-2}=\frac {a \log \left (x-a^2 x\right )}{1-a^2}+c_1,y(x)\right ],\text {Solve}\left [\frac {-2 i \tan ^{-1}\left (\frac {y(x)}{x \sqrt {a^2-\frac {y(x)^2}{x^2}-1}}\right )+2 i a \tan ^{-1}\left (\frac {a y(x)}{x \sqrt {a^2-\frac {y(x)^2}{x^2}-1}}\right )+a \log \left (\frac {y(x)^2}{x^2}+1\right )}{2 a^2-2}=\frac {a \log \left (x-a^2 x\right )}{1-a^2}+c_1,y(x)\right ]\right \}\]

Maple : cpu = 0.963 (sec), leaf count = 229

dsolve((a^2-1)*x^2*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)-y(x)^2+a^2*x^2 = 0,y(x))
 
\[\frac {-2 c_{1} a +2 a \ln \left (x \right )+\ln \left (\frac {y \left (x \right )^{2}+x^{2}}{x^{2}}\right ) a -2 \sqrt {-a^{2}}\, \arctan \left (\frac {a^{2} y \left (x \right )}{\sqrt {-a^{2}}\, \sqrt {\frac {y \left (x \right )^{2}+\left (-a^{2}+1\right ) x^{2}}{x^{2}}}\, x}\right )+2 \ln \left (\frac {\sqrt {\frac {-a^{2} x^{2}+x^{2}+y \left (x \right )^{2}}{x^{2}}}\, x +y \left (x \right )}{x}\right )}{2 a} = 0\]