2.444   ODE No. 444

\[ x^2 y'(x)^2-(y(x)-2 x) y(x) y'(x)+y(x)^2=0 \]

Mathematica : cpu = 1.60041 (sec), leaf count = 49

DSolve[y[x]^2 - y[x]*(-2*x + y[x])*Derivative[1][y][x] + x^2*Derivative[1][y][x]^2 == 0,y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {16 e^{-2 c_1}}{-4+e^{2 c_1} x}\right \},\left \{y(x)\to -\frac {16 e^{-2 c_1}}{4+e^{2 c_1} x}\right \}\right \}\]

Maple : cpu = 1.223 (sec), leaf count = 120

dsolve(x^2*diff(y(x),x)^2-y(x)*(y(x)-2*x)*diff(y(x),x)+y(x)^2 = 0,y(x))
 
\[y \left (x \right ) = 4 x\]