2.44   ODE No. 44

\[ 2 a x^3 y(x)^3+y'(x)+2 x y(x)=0 \]

Mathematica : cpu = 0.0955867 (sec), leaf count = 72

DSolve[2*x*y[x] + 2*a*x^3*y[x]^3 + Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {\sqrt {2}}{\sqrt {-2 a x^2-a+2 c_1 e^{2 x^2}}}\right \},\left \{y(x)\to \frac {\sqrt {2}}{\sqrt {-2 a x^2-a+2 c_1 e^{2 x^2}}}\right \}\right \}\]

Maple : cpu = 0.013 (sec), leaf count = 53

dsolve(diff(y(x),x)+2*a*x^3*y(x)^3+2*x*y(x) = 0,y(x))
 
\[y \left (x \right ) = -\frac {2}{\sqrt {-4 a \,x^{2}+4 \,{\mathrm e}^{2 x^{2}} c_{1} -2 a}}\]

Hand solution

\begin{equation} y^{\prime }=-2xy-2ax^{3}y^{3}\tag {1}\end{equation}

This is of the form \(y^{\prime }=f_{0}+f_{1}y+f_{2}y^{2}+f_{3}y^{3}\) where \(f_{0}=0,f_{2}=0\). Hence this is Bernoulli first order non-linear ODE. We start by diving by \(y^{3}\)

\[ \frac {y^{\prime }}{y^{3}}=-2x\frac {1}{y^{2}}-2ax^{3}\]

Let \(u=\frac {1}{y^{2}}\), hence \(u^{\prime }=-2\frac {y^{\prime }}{y^{3}}\) and the above becomes

\begin{align*} -\frac {1}{2}u^{\prime } & =-2xu-2ax^{3}\\ u^{\prime }-4xu & =4ax^{3}\end{align*}

Integrating factor is \(e^{-4\int xdx}=e^{-2x^{2}}\) hence

\[ \frac {d}{dx}\left ( e^{-2x^{2}}u\right ) =4ax^{3}e^{-2x^{2}}\]

Integrating

\begin{align*} e^{-2x^{2}}u & =4a\int x^{3}e^{-2x^{2}}dx+C\\ & =4a\left ( \frac {-1}{8}\left ( 2x^{2}+1\right ) e^{-2x^{2}}\right ) +C \end{align*}

Therefore

\[ u=-\frac {1}{2}a\left ( 2x^{2}+1\right ) +Ce^{2x^{2}}\]

Hence

\[ y^{2}=\frac {1}{u}=\frac {1}{-\frac {1}{2}a\left ( 2x^{2}+1\right ) +Ce^{2x^{2}}}\]

Or

\[ y=\pm \frac {\sqrt {2}}{\sqrt {-a\left ( 2x^{2}+1\right ) +Ce^{2x^{2}}}}\]

Verification

ode:=2*a*x^3*y(x)^3+diff(y(x),x)+2*x*y(x)=0; 
my_sol:=sqrt(2)/sqrt(-a*(2*x^2+1)+_C1*exp(2*x^2)); 
odetest(y(x)=my_sol,ode); 
0 
my_sol:=-sqrt(2)/sqrt(-a*(2*x^2+1)+_C1*exp(2*x^2)); 
odetest(y(x)=my_sol,ode); 
0