2.431 ODE No. 431
\[ x^2 y'(x)^2-y(x)^4+y(x)^2=0 \]
✓ Mathematica : cpu = 0.0582197 (sec), leaf count = 81
DSolve[y[x]^2 - y[x]^4 + x^2*Derivative[1][y][x]^2 == 0,y[x],x]
\[\left \{\left \{y(x)\to -\sqrt {1+\tan ^2(-\log (x)+c_1)}\right \},\left \{y(x)\to \sqrt {1+\tan ^2(-\log (x)+c_1)}\right \},\left \{y(x)\to -\sqrt {1+\tan ^2(\log (x)+c_1)}\right \},\left \{y(x)\to \sqrt {1+\tan ^2(\log (x)+c_1)}\right \}\right \}\]
✓ Maple : cpu = 0.185 (sec), leaf count = 62
dsolve(x^2*diff(y(x),x)^2-y(x)^4+y(x)^2 = 0,y(x))
\[y \left (x \right ) = -1\]