2.418 ODE No. 418
\[ a y(x)+x y'(x)^2-y(x) y'(x)=0 \]
✓ Mathematica : cpu = 1.20987 (sec), leaf count = 168
DSolve[a*y[x] - y[x]*Derivative[1][y][x] + x*Derivative[1][y][x]^2 == 0,y[x],x]
\[\left \{\text {Solve}\left [\frac {\sqrt {\frac {y(x)}{x}-4 a}}{\sqrt {\frac {y(x)}{x}-4 a}-\sqrt {\frac {y(x)}{x}}}+\tanh ^{-1}\left (\frac {\sqrt {\frac {y(x)}{x}-4 a}}{\sqrt {\frac {y(x)}{x}}}\right )=\frac {\log (x)}{2}+c_1,y(x)\right ],\text {Solve}\left [\tanh ^{-1}\left (\frac {\sqrt {\frac {y(x)}{x}-4 a}}{\sqrt {\frac {y(x)}{x}}}\right )-\frac {\sqrt {\frac {y(x)}{x}-4 a}}{\sqrt {\frac {y(x)}{x}-4 a}+\sqrt {\frac {y(x)}{x}}}=-\frac {\log (x)}{2}+c_1,y(x)\right ]\right \}\]
✓ Maple : cpu = 0.049 (sec), leaf count = 42
dsolve(x*diff(y(x),x)^2-y(x)*diff(y(x),x)+a*y(x) = 0,y(x))
\[y \left (x \right ) = 0\]