2.410   ODE No. 410

\[ x y'(x)^2+4 y'(x)-2 y(x)=0 \]

Mathematica : cpu = 30.7636 (sec), leaf count = 90

DSolve[-2*y[x] + 4*Derivative[1][y][x] + x*Derivative[1][y][x]^2 == 0,y[x],x]
 
\[\text {Solve}\left [\left \{x=-\frac {2 (2 K[1]-y(K[1]))}{K[1]^2},y(x)=4 \left (\frac {2}{K[1]}+\log (K[1])\right ) \exp \left (-4 \left (\frac {1}{2} \log (2-K[1])-\frac {1}{2} \log (K[1])\right )\right )+c_1 \exp \left (-4 \left (\frac {1}{2} \log (2-K[1])-\frac {1}{2} \log (K[1])\right )\right )\right \},\{y(x),K[1]\}\right ]\]

Maple : cpu = 0.072 (sec), leaf count = 64

dsolve(x*diff(y(x),x)^2+4*diff(y(x),x)-2*y(x) = 0,y(x))
 
\[y \left (x \right ) = \frac {x \,{\mathrm e}^{2 \operatorname {RootOf}\left (-x \,{\mathrm e}^{2 \textit {\_Z}}+4 x \,{\mathrm e}^{\textit {\_Z}}-4 \,{\mathrm e}^{\textit {\_Z}}+c_{1} +8 \textit {\_Z} -4 x \right )}}{2}+2 \,{\mathrm e}^{\operatorname {RootOf}\left (-x \,{\mathrm e}^{2 \textit {\_Z}}+4 x \,{\mathrm e}^{\textit {\_Z}}-4 \,{\mathrm e}^{\textit {\_Z}}+c_{1} +8 \textit {\_Z} -4 x \right )}\]