2.397   ODE No. 397

\[ -2 x^3 y(x)^2 y'(x)-4 x^2 y(x)^3+y'(x)^2=0 \]

Mathematica : cpu = 1.57811 (sec), leaf count = 161

DSolve[-4*x^2*y[x]^3 - 2*x^3*y[x]^2*Derivative[1][y][x] + Derivative[1][y][x]^2 == 0,y[x],x]
 
\[\left \{\text {Solve}\left [-\frac {x \sqrt {x^4 y(x)+4} y(x)^{3/2} \tanh ^{-1}\left (\frac {\sqrt {x^4 y(x)+4}}{x^2 \sqrt {y(x)}}\right )}{2 \sqrt {x^2 y(x)^3 \left (x^4 y(x)+4\right )}}-\frac {1}{4} \log (y(x))=c_1,y(x)\right ],\text {Solve}\left [\frac {x y(x)^{3/2} \sqrt {x^4 y(x)+4} \tanh ^{-1}\left (\frac {\sqrt {x^4 y(x)+4}}{x^2 \sqrt {y(x)}}\right )}{2 \sqrt {x^2 y(x)^3 \left (x^4 y(x)+4\right )}}-\frac {1}{4} \log (y(x))=c_1,y(x)\right ]\right \}\]

Maple : cpu = 0.389 (sec), leaf count = 128

dsolve(diff(y(x),x)^2-2*x^3*y(x)^2*diff(y(x),x)-4*x^2*y(x)^3 = 0,y(x))
 
\[y \left (x \right ) = -\frac {4}{x^{4}}\]