2.390 ODE No. 390
\[ a y(x) y'(x)-b x-c+y'(x)^2=0 \]
✓ Mathematica : cpu = 3.40758 (sec), leaf count = 161
DSolve[-c - b*x + a*y[x]*Derivative[1][y][x] + Derivative[1][y][x]^2 == 0,y[x],x]
\[\text {Solve}\left [\left \{x=\left (\frac {a \log \left (\sqrt {b-a K[1]^2}-\sqrt {-a} K[1]\right )}{(-a)^{3/2}}-\frac {c \sqrt {b-a K[1]^2}}{b K[1]}\right ) \exp \left (b \left (\frac {\log (K[1])}{b}-\frac {\log \left (b-a K[1]^2\right )}{2 b}\right )\right )+c_1 \exp \left (b \left (\frac {\log (K[1])}{b}-\frac {\log \left (b-a K[1]^2\right )}{2 b}\right )\right ),y(x)=\frac {b x}{a K[1]}+\frac {c-K[1]^2}{a K[1]}\right \},\{y(x),K[1]\}\right ]\]
✓ Maple : cpu = 0.305 (sec), leaf count = 281
dsolve(diff(y(x),x)^2+a*y(x)*diff(y(x),x)-b*x-c = 0,y(x))
\[y \left (x \right ) = \frac {2 \,{\mathrm e}^{\operatorname {RootOf}\left (\sqrt {a}\, c_{1} b \,{\mathrm e}^{2 \textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} a b x -{\mathrm e}^{2 \textit {\_Z}} \textit {\_Z} b -{\mathrm e}^{2 \textit {\_Z}} a c +\sqrt {a}\, c_{1} b^{2}+a \,b^{2} x -\textit {\_Z} \,b^{2}+a b c \right )} \left (-\frac {\left ({\mathrm e}^{2 \operatorname {RootOf}\left (\sqrt {a}\, c_{1} b \,{\mathrm e}^{2 \textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} a b x -{\mathrm e}^{2 \textit {\_Z}} \textit {\_Z} b -{\mathrm e}^{2 \textit {\_Z}} a c +\sqrt {a}\, c_{1} b^{2}+a \,b^{2} x -\textit {\_Z} \,b^{2}+a b c \right )}+b \right )^{2} {\mathrm e}^{-2 \operatorname {RootOf}\left (\sqrt {a}\, c_{1} b \,{\mathrm e}^{2 \textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} a b x -{\mathrm e}^{2 \textit {\_Z}} \textit {\_Z} b -{\mathrm e}^{2 \textit {\_Z}} a c +\sqrt {a}\, c_{1} b^{2}+a \,b^{2} x -\textit {\_Z} \,b^{2}+a b c \right )}}{4}+a \left (b x +c \right )\right )}{a^{{3}/{2}} \left ({\mathrm e}^{2 \operatorname {RootOf}\left (\sqrt {a}\, c_{1} b \,{\mathrm e}^{2 \textit {\_Z}}-{\mathrm e}^{2 \textit {\_Z}} a b x -{\mathrm e}^{2 \textit {\_Z}} \textit {\_Z} b -{\mathrm e}^{2 \textit {\_Z}} a c +\sqrt {a}\, c_{1} b^{2}+a \,b^{2} x -\textit {\_Z} \,b^{2}+a b c \right )}+b \right )}\]