2.38   ODE No. 38

\[ -a y(x)^3-\frac {b}{x^{3/2}}+y'(x)=0 \]

Mathematica : cpu = 0.383799 (sec), leaf count = 320

DSolve[-(b/x^(3/2)) - a*y[x]^3 + Derivative[1][y][x] == 0,y[x],x]
 
\[\text {Solve}\left [\frac {2}{3} a b^2 \text {RootSum}\left [8 \text {$\#$1}^9 a b^2+24 \text {$\#$1}^6 a b^2+24 \text {$\#$1}^3 a b^2+\text {$\#$1}^3+8 a b^2\& ,\frac {4 \text {$\#$1}^6 \log \left (y(x) \sqrt [3]{\frac {a x^{3/2}}{b}}-\text {$\#$1}\right )+2 \text {$\#$1}^4 \sqrt [3]{-\frac {1}{a b^2}} \log \left (y(x) \sqrt [3]{\frac {a x^{3/2}}{b}}-\text {$\#$1}\right )+8 \text {$\#$1}^3 \log \left (y(x) \sqrt [3]{\frac {a x^{3/2}}{b}}-\text {$\#$1}\right )+\text {$\#$1}^2 \left (-\frac {1}{a b^2}\right )^{2/3} \log \left (y(x) \sqrt [3]{\frac {a x^{3/2}}{b}}-\text {$\#$1}\right )+2 \text {$\#$1} \sqrt [3]{-\frac {1}{a b^2}} \log \left (y(x) \sqrt [3]{\frac {a x^{3/2}}{b}}-\text {$\#$1}\right )+4 \log \left (y(x) \sqrt [3]{\frac {a x^{3/2}}{b}}-\text {$\#$1}\right )}{24 \text {$\#$1}^8 a b^2+48 \text {$\#$1}^5 a b^2+24 \text {$\#$1}^2 a b^2+\text {$\#$1}^2}\& \right ]=\frac {a x \log (x)}{\left (\frac {a x^{3/2}}{b}\right )^{2/3}}+c_1,y(x)\right ]\]

Maple : cpu = 0.023 (sec), leaf count = 34

dsolve(diff(y(x),x)-a*y(x)^3-b/x^(3/2) = 0,y(x))
 
\[y \left (x \right ) = \frac {\operatorname {RootOf}\left (-\ln \left (x \right )+c_{1} +2 \left (\int _{}^{\textit {\_Z}}\frac {1}{2 a \,\textit {\_a}^{3}+\textit {\_a} +2 b}d \textit {\_a} \right )\right )}{\sqrt {x}}\]

Hand solution

\begin{equation} y^{\prime }\left ( x\right ) =ay^{3}+bx^{-\frac {3}{2}}\tag {1}\end{equation}

This can be transformed to Abel first order non-linear ode as follows. Let \(y\left ( x\right ) =x^{-\frac {1}{2}}\eta \left ( \xi \right ) \) where \(\xi =\ln x\) hence

\begin{align*} \frac {dy}{dx} & =-\frac {1}{2}x^{-\frac {3}{2}}\eta \left ( \xi \right ) +x^{-\frac {1}{2}}\frac {d\eta }{d\xi }\frac {d\xi }{dx}\\ & =-\frac {1}{2}x^{-\frac {3}{2}}\eta \left ( \xi \right ) +x^{-\frac {1}{2}}\frac {d\eta }{d\xi }\frac {1}{x}\\ & =-\frac {1}{2}x^{-\frac {3}{2}}\eta \left ( \xi \right ) +x^{-\frac {3}{2}}\frac {d\eta }{d\xi }\end{align*}

Substituting in (1) gives

\begin{align*} -\frac {1}{2}x^{-\frac {3}{2}}\eta \left ( \xi \right ) +x^{-\frac {3}{2}}\frac {d\eta }{d\xi } & =a\left ( x^{-\frac {1}{2}}\eta \left ( \xi \right ) \right ) ^{3}+bx^{-\frac {3}{2}}\\ -\frac {1}{2}x^{-\frac {3}{2}}\eta \left ( \xi \right ) +x^{-\frac {3}{2}}\frac {d\eta }{d\xi } & =ax^{-\frac {3}{2}}\eta ^{3}\left ( \xi \right ) +bx^{-\frac {3}{2}}\\ -\frac {1}{2}\eta +\eta ^{\prime } & =a\eta ^{3}+b\\ \eta ^{\prime } & =b+\frac {1}{2}\eta +a\eta ^{3}\end{align*}

This is Abel first kind. In general form it is

\[ \eta ^{\prime }=f_{0}+f_{1}\eta +f_{2}\eta ^{2}+f_{3}\eta ^{3}\]

Where in this case \(f_{0}=b,f_{1}=\frac {1}{2},f_{2}=0,f_{3}=a\). Using Maple, the solution to the above is (I need to learn how to solve Able by hand more) is implicit, given as

\[ \eta =\xi -\int ^{\eta \left ( \xi \right ) }\frac {1}{b+\frac {1}{2}z+az^{3}}dz+C \]

Where \(C\) is constant of integration. Hence, since \(y\left ( x\right ) =x^{-\frac {1}{2}}\eta \left ( \xi \right ) \), then \(\eta \left ( \xi \right ) =\sqrt {x}y\) and the above becomes

\begin{align*} \sqrt {x}y & =\ln x-\int ^{\sqrt {x}y}\frac {1}{b+\frac {1}{2}z+az^{3}}dz+C\\ y\left ( x\right ) & =\left ( \ln x-\int ^{\sqrt {x}y}\frac {1}{b+\frac {1}{2}z+az^{3}}dz+C\right ) \frac {1}{\sqrt {x}}\end{align*}

DId not verify. Need to look more into this later.