2.344 ODE No. 344
\[ y'(x) (\log (y(x))+2 x-1)-2 y(x)=0 \]
✓ Mathematica : cpu = 0.225607 (sec), leaf count = 23
DSolve[-2*y[x] + (-1 + 2*x + Log[y[x]])*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -\frac {W\left (-2 c_1 e^{-2 x}\right )}{2 c_1}\right \}\right \}\]
✓ Maple : cpu = 0.049 (sec), leaf count = 19
dsolve((ln(y(x))+2*x-1)*diff(y(x),x)-2*y(x) = 0,y(x))
\[y \left (x \right ) = {\mathrm e}^{-\operatorname {LambertW}\left (-2 \,{\mathrm e}^{-2 x} c_{1} \right )-2 x}\]