2.333 ODE No. 333
\[ -x^{3/2} y(x)^{5/2}+\left (2 x^{5/2} y(x)^{3/2}+x^2 y(x)-x\right ) y'(x)+x y(x)^2-y(x)=0 \]
✓ Mathematica : cpu = 0.446601 (sec), leaf count = 72
DSolve[-y[x] + x*y[x]^2 - x^(3/2)*y[x]^(5/2) + (-x + x^2*y[x] + 2*x^(5/2)*y[x]^(3/2))*Derivative[1][y][x] == 0,y[x],x]
\[\text {Solve}\left [\frac {2 \sqrt {x y(x)} \log (y(x))}{\sqrt {x} \sqrt {y(x)}}-\frac {\sqrt {x y(x)} \left (3 x^{3/2} y(x)^{3/2} \log (x)+6 x y(x)-2\right )}{3 x^2 y(x)^2}=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.114 (sec), leaf count = 33
dsolve((2*x^(5/2)*y(x)^(3/2)+x^2*y(x)-x)*diff(y(x),x)-x^(3/2)*y(x)^(5/2)+x*y(x)^2-y(x) = 0,y(x))
\[3 \ln \left (y \left (x \right )\right )+\frac {1}{x^{{3}/{2}} y \left (x \right )^{{3}/{2}}}-\frac {3}{\sqrt {x}\, \sqrt {y \left (x \right )}}-\frac {3 \ln \left (x \right )}{2}-c_{1} = 0\]