2.331 ODE No. 331
\[ y'(x) \left (\sum _{\nu =1}^p y(x)^{\nu } f(\nu )(x)\right )-\sum _{\nu =1}^q y(x)^{\nu } g(\nu )(x)=0 \]
✗ Mathematica : cpu = 47.7843 (sec), leaf count = 0
DSolve[-Sum[y[x]^nu*g[nu][x], {nu, 1, q}] + Sum[y[x]^nu*f[nu][x], {nu, 1, p}]*Derivative[1][y][x] == 0,y[x],x]
, could not solve
DSolve[-Sum[y[x]^nu*g[nu][x], {nu, 1, q}] + Sum[y[x]^nu*f[nu][x], {nu, 1, p}]*Derivative[1][y][x] == 0, y[x], x]
✓ Maple : cpu = 0.3 (sec), leaf count = 78
dsolve(diff(y(x),x)*f[nu](x)*(-y(x)+y(x)^(p+1))/(-1+y(x))-g[nu](x)*(-y(x)+y(x)^(q+1))/(-1+y(x)) = 0,y(x))
\[\frac {y \left (x \right )^{p +1} \operatorname {LerchPhi}\left (-y \left (x \right )^{q} \left (-1\right )^{\operatorname {csgn}\left (i y \left (x \right )^{q}\right )}, 1, \frac {p +1}{q}\right )-y \left (x \right ) \operatorname {LerchPhi}\left (-y \left (x \right )^{q} \left (-1\right )^{\operatorname {csgn}\left (i y \left (x \right )^{q}\right )}, 1, \frac {1}{q}\right )+q \left (\int \frac {g_{\nu }\left (x \right )}{f_{\nu }\left (x \right )}d x +c_{1} \right )}{q} = 0\]