2.326   ODE No. 326

\[ y(x) y'(x) \left ((a y(x)+b x)^3+b x^3\right )+x \left ((a y(x)+b x)^3+a y(x)^3\right )=0 \]

Mathematica : cpu = 1.544 (sec), leaf count = 13289

DSolve[x*(a*y[x]^3 + (b*x + a*y[x])^3) + y[x]*(b*x^3 + (b*x + a*y[x])^3)*Derivative[1][y][x] == 0,y[x],x]
 
\[ \text {Too large to display} \]

Maple : cpu = 1.203 (sec), leaf count = 160

dsolve(y(x)*((a*y(x)+b*x)^3+b*x^3)*diff(y(x),x)+x*((a*y(x)+b*x)^3+a*y(x)^3) = 0,y(x))
 
\[y \left (x \right ) = \frac {x \left (x c_{1} -b \operatorname {RootOf}\left (b^{2} \textit {\_Z}^{4}-2 b x c_{1} \textit {\_Z}^{3}+\left (a^{2} c_{1}^{2} x^{2}+b^{2} c_{1}^{2} x^{2}+c_{1}^{2} x^{2}-a^{2}\right ) \textit {\_Z}^{2}-2 b \,x^{3} c_{1}^{3} \textit {\_Z} +x^{4} c_{1}^{4}\right )\right )}{a \operatorname {RootOf}\left (b^{2} \textit {\_Z}^{4}-2 b x c_{1} \textit {\_Z}^{3}+\left (a^{2} c_{1}^{2} x^{2}+b^{2} c_{1}^{2} x^{2}+c_{1}^{2} x^{2}-a^{2}\right ) \textit {\_Z}^{2}-2 b \,x^{3} c_{1}^{3} \textit {\_Z} +x^{4} c_{1}^{4}\right )}\]