2.322 ODE No. 322
\[ \left (10 x^2 y(x)^3-3 y(x)^2-2\right ) y'(x)+5 x y(x)^4+x=0 \]
✓ Mathematica : cpu = 0.231726 (sec), leaf count = 2077
DSolve[x + 5*x*y[x]^4 + (-2 - 3*y[x]^2 + 10*x^2*y[x]^3)*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} \left (5 x^4-10 c_1 x^2-2\right )}{5 x^2 \sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}{15 \sqrt [3]{2} x^2}+\frac {1}{25 x^4}}-\frac {1}{2} \sqrt {-\frac {\frac {32}{5 x^2}+\frac {8}{125 x^6}}{4 \sqrt {\frac {4 \sqrt [3]{2} \left (5 x^4-10 c_1 x^2-2\right )}{5 x^2 \sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}{15 \sqrt [3]{2} x^2}+\frac {1}{25 x^4}}}-\frac {\sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}{15 \sqrt [3]{2} x^2}-\frac {4 \sqrt [3]{2} \left (5 x^4-10 c_1 x^2-2\right )}{5 x^2 \sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}+\frac {2}{25 x^4}}+\frac {1}{10 x^2}\right \},\left \{y(x)\to -\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} \left (5 x^4-10 c_1 x^2-2\right )}{5 x^2 \sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}{15 \sqrt [3]{2} x^2}+\frac {1}{25 x^4}}+\frac {1}{2} \sqrt {-\frac {\frac {32}{5 x^2}+\frac {8}{125 x^6}}{4 \sqrt {\frac {4 \sqrt [3]{2} \left (5 x^4-10 c_1 x^2-2\right )}{5 x^2 \sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}{15 \sqrt [3]{2} x^2}+\frac {1}{25 x^4}}}-\frac {\sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}{15 \sqrt [3]{2} x^2}-\frac {4 \sqrt [3]{2} \left (5 x^4-10 c_1 x^2-2\right )}{5 x^2 \sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}+\frac {2}{25 x^4}}+\frac {1}{10 x^2}\right \},\left \{y(x)\to \frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} \left (5 x^4-10 c_1 x^2-2\right )}{5 x^2 \sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}{15 \sqrt [3]{2} x^2}+\frac {1}{25 x^4}}-\frac {1}{2} \sqrt {\frac {\frac {32}{5 x^2}+\frac {8}{125 x^6}}{4 \sqrt {\frac {4 \sqrt [3]{2} \left (5 x^4-10 c_1 x^2-2\right )}{5 x^2 \sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}{15 \sqrt [3]{2} x^2}+\frac {1}{25 x^4}}}-\frac {\sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}{15 \sqrt [3]{2} x^2}-\frac {4 \sqrt [3]{2} \left (5 x^4-10 c_1 x^2-2\right )}{5 x^2 \sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}+\frac {2}{25 x^4}}+\frac {1}{10 x^2}\right \},\left \{y(x)\to \frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} \left (5 x^4-10 c_1 x^2-2\right )}{5 x^2 \sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}{15 \sqrt [3]{2} x^2}+\frac {1}{25 x^4}}+\frac {1}{2} \sqrt {\frac {\frac {32}{5 x^2}+\frac {8}{125 x^6}}{4 \sqrt {\frac {4 \sqrt [3]{2} \left (5 x^4-10 c_1 x^2-2\right )}{5 x^2 \sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}+\frac {\sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}{15 \sqrt [3]{2} x^2}+\frac {1}{25 x^4}}}-\frac {\sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}{15 \sqrt [3]{2} x^2}-\frac {4 \sqrt [3]{2} \left (5 x^4-10 c_1 x^2-2\right )}{5 x^2 \sqrt [3]{2268 x^2-216 c_1+\sqrt {\left (2160 x^2+108 \left (x^2-2 c_1\right )\right ){}^2-4 \left (60 x^4-120 c_1 x^2-24\right ){}^3}}}+\frac {2}{25 x^4}}+\frac {1}{10 x^2}\right \}\right \}\]
✓ Maple : cpu = 0.029 (sec), leaf count = 29
dsolve((10*x^2*y(x)^3-3*y(x)^2-2)*diff(y(x),x)+5*x*y(x)^4+x = 0,y(x))
\[\frac {5 x^{2} y \left (x \right )^{4}}{2}-y \left (x \right )^{3}+\frac {x^{2}}{2}-2 y \left (x \right )+c_{1} = 0\]