2.315 ODE No. 315
\[ \left (2 x y(x)^3-x^4\right ) y'(x)+2 x^3 y(x)-y(x)^4=0 \]
✓ Mathematica : cpu = 0.23373 (sec), leaf count = 368
DSolve[2*x^3*y[x] - y[x]^4 + (-x^4 + 2*x*y[x]^3)*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {\sqrt [3]{\frac {2}{3}} e^{c_1} x}{\sqrt [3]{-9 x^3+\sqrt {3} \sqrt {27 x^6-4 e^{3 c_1} x^3}}}+\frac {\sqrt [3]{-9 x^3+\sqrt {3} \sqrt {27 x^6-4 e^{3 c_1} x^3}}}{\sqrt [3]{2} 3^{2/3}}\right \},\left \{y(x)\to -\frac {\left (1+i \sqrt {3}\right ) e^{c_1} x}{2^{2/3} \sqrt [3]{3} \sqrt [3]{-9 x^3+\sqrt {3} \sqrt {27 x^6-4 e^{3 c_1} x^3}}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-9 x^3+\sqrt {3} \sqrt {27 x^6-4 e^{3 c_1} x^3}}}{2 \sqrt [3]{2} 3^{2/3}}\right \},\left \{y(x)\to -\frac {\left (1-i \sqrt {3}\right ) e^{c_1} x}{2^{2/3} \sqrt [3]{3} \sqrt [3]{-9 x^3+\sqrt {3} \sqrt {27 x^6-4 e^{3 c_1} x^3}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-9 x^3+\sqrt {3} \sqrt {27 x^6-4 e^{3 c_1} x^3}}}{2 \sqrt [3]{2} 3^{2/3}}\right \}\right \}\]
✓ Maple : cpu = 0.164 (sec), leaf count = 365
dsolve((2*x*y(x)^3-x^4)*diff(y(x),x)-y(x)^4+2*x^3*y(x) = 0,y(x))
\[y \left (x \right ) = \frac {{\left (-12 x \left (9 x^{2} c_{1} -\sqrt {3}\, \sqrt {\frac {27 c_{1}^{3} x^{4}-4 x}{c_{1}}}\right ) c_{1}^{2}\right )}^{{2}/{3}}+12 x c_{1}}{6 c_{1} \left (-108 c_{1}^{2} x \left (x^{2} c_{1} -\frac {\sqrt {3}\, \sqrt {\frac {27 c_{1}^{3} x^{4}-4 x}{c_{1}}}}{9}\right )\right )^{{1}/{3}}}\]