2.305 ODE No. 305
\[ x^2+\left (y(x)^3-3 x\right ) y'(x)-3 y(x)=0 \]
✓ Mathematica : cpu = 0.128448 (sec), leaf count = 1277
DSolve[x^2 - 3*y[x] + (-3*x + y[x]^3)*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -\frac {1}{2} \sqrt {\frac {16 \sqrt [3]{2} \left (x^3+3 c_1\right )}{\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}-\frac {1}{2} \sqrt {-\frac {24 x}{\sqrt {\frac {16 \sqrt [3]{2} \left (x^3+3 c_1\right )}{\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}}-\frac {\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}-\frac {16 \sqrt [3]{2} \left (x^3+3 c_1\right )}{\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}\right \},\left \{y(x)\to \frac {1}{2} \sqrt {-\frac {24 x}{\sqrt {\frac {16 \sqrt [3]{2} \left (x^3+3 c_1\right )}{\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}}-\frac {\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}-\frac {16 \sqrt [3]{2} \left (x^3+3 c_1\right )}{\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}-\frac {1}{2} \sqrt {\frac {16 \sqrt [3]{2} \left (x^3+3 c_1\right )}{\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}\right \},\left \{y(x)\to \frac {1}{2} \sqrt {\frac {16 \sqrt [3]{2} \left (x^3+3 c_1\right )}{\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}-\frac {1}{2} \sqrt {\frac {24 x}{\sqrt {\frac {16 \sqrt [3]{2} \left (x^3+3 c_1\right )}{\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}}-\frac {\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}-\frac {16 \sqrt [3]{2} \left (x^3+3 c_1\right )}{\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}\right \},\left \{y(x)\to \frac {1}{2} \sqrt {\frac {16 \sqrt [3]{2} \left (x^3+3 c_1\right )}{\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}+\frac {1}{2} \sqrt {\frac {24 x}{\sqrt {\frac {16 \sqrt [3]{2} \left (x^3+3 c_1\right )}{\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}+\frac {\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}}}-\frac {\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}{9 \sqrt [3]{2}}-\frac {16 \sqrt [3]{2} \left (x^3+3 c_1\right )}{\sqrt [3]{104976 x^2-\sqrt {11019960576 x^4-4 \left (144 x^3+432 c_1\right ){}^3}}}}\right \}\right \}\]
✓ Maple : cpu = 0.023 (sec), leaf count = 21
dsolve((y(x)^3-3*x)*diff(y(x),x)-3*y(x)+x^2 = 0,y(x))
\[\frac {x^{3}}{3}-3 x y \left (x \right )+\frac {y \left (x \right )^{4}}{4}+c_{1} = 0\]