2.299   ODE No. 299

\[ \left (3 x y(x)^2-x^2\right ) y'(x)+y(x)^3-2 x y(x)=0 \]

Mathematica : cpu = 0.0912342 (sec), leaf count = 371

DSolve[-2*x*y[x] + y[x]^3 + (-x^2 + 3*x*y[x]^2)*Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {\sqrt [3]{\frac {2}{3}} x^2}{\sqrt [3]{9 c_1 x^2+\sqrt {3} \sqrt {-4 x^9+27 c_1{}^2 x^4}}}-\frac {\sqrt [3]{9 c_1 x^2+\sqrt {3} \sqrt {-4 x^9+27 c_1{}^2 x^4}}}{\sqrt [3]{2} 3^{2/3} x}\right \},\left \{y(x)\to \frac {\left (1+i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{3} \sqrt [3]{9 c_1 x^2+\sqrt {3} \sqrt {-4 x^9+27 c_1{}^2 x^4}}}+\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{9 c_1 x^2+\sqrt {3} \sqrt {-4 x^9+27 c_1{}^2 x^4}}}{2 \sqrt [3]{2} 3^{2/3} x}\right \},\left \{y(x)\to \frac {\left (1-i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{3} \sqrt [3]{9 c_1 x^2+\sqrt {3} \sqrt {-4 x^9+27 c_1{}^2 x^4}}}+\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{9 c_1 x^2+\sqrt {3} \sqrt {-4 x^9+27 c_1{}^2 x^4}}}{2 \sqrt [3]{2} 3^{2/3} x}\right \}\right \}\]

Maple : cpu = 0.267 (sec), leaf count = 276

dsolve((3*x*y(x)^2-x^2)*diff(y(x),x)+y(x)^3-2*x*y(x) = 0,y(x))
 
\[y \left (x \right ) = \frac {{\left (\left (12 \sqrt {-12 x^{5}+81 c_{1}^{2}}+108 c_{1} \right ) x^{2}\right )}^{{1}/{3}}}{6 x}+\frac {2 x^{2}}{{\left (\left (12 \sqrt {-12 x^{5}+81 c_{1}^{2}}+108 c_{1} \right ) x^{2}\right )}^{{1}/{3}}}\]