2.296 ODE No. 296
\[ x^4+x \left (x^2 y(x)+x^2+y(x)^2\right ) y'(x)-2 x^2 y(x)^2-2 y(x)^3=0 \]
✓ Mathematica : cpu = 0.329991 (sec), leaf count = 102
DSolve[x^4 - 2*x^2*y[x]^2 - 2*y[x]^3 + x*(x^2 + x^2*y[x] + y[x]^2)*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -e^{-c_1} x^2-e^{-c_1} \sqrt {x^4-e^{c_1} x^4+e^{2 c_1} x^2}\right \},\left \{y(x)\to e^{-c_1} \sqrt {x^4-e^{c_1} x^4+e^{2 c_1} x^2}-e^{-c_1} x^2\right \}\right \}\]
✓ Maple : cpu = 0.906 (sec), leaf count = 61
dsolve(x*(y(x)^2+x^2*y(x)+x^2)*diff(y(x),x)-2*y(x)^3-2*y(x)^2*x^2+x^4 = 0,y(x))
\[y \left (x \right ) = -x^{2} c_{1} -\sqrt {c_{1}^{2} x^{4}-c_{1} x^{4}+x^{2}}\]