2.294 ODE No. 294
\[ x \left (-a+x^2+y(x)^2\right ) y'(x)-y(x) \left (a+x^2+y(x)^2\right )=0 \]
✓ Mathematica : cpu = 0.186808 (sec), leaf count = 71
DSolve[-(y[x]*(a + x^2 + y[x]^2)) + x*(-a + x^2 + y[x]^2)*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {1}{2} \left (c_1 x-\sqrt {-4 a+4 x^2+c_1{}^2 x^2}\right )\right \},\left \{y(x)\to \frac {1}{2} \left (\sqrt {-4 a+4 x^2+c_1{}^2 x^2}+c_1 x\right )\right \}\right \}\]
✓ Maple : cpu = 0.096 (sec), leaf count = 112
dsolve(x*(y(x)^2+x^2-a)*diff(y(x),x)-y(x)*(y(x)^2+x^2+a) = 0,y(x))
\[\frac {1}{\frac {1}{y \left (x \right )^{2}}-\frac {1}{-x^{2}+a}} = -\frac {\sqrt {x^{2}-a}\, x}{\sqrt {c_{1} +\frac {4 a}{x^{2}-a}}}+\frac {x^{2}}{2}-\frac {a}{2}\]