2.292 ODE No. 292
\[ y'(x) (a y(x)+b x+c)^2+(\alpha y(x)+\beta x+\gamma )^2=0 \]
✓ Mathematica : cpu = 30.4006 (sec), leaf count = 1716
DSolve[(EulerGamma + beta*x + alpha*y[x])^2 + (c + b*x + a*y[x])^2*Derivative[1][y][x] == 0,y[x],x]
\[\text {Solve}\left [(\alpha b-a \beta ) \text {RootSum}\left [-c y(x)^2 \alpha ^3-b \text {$\#$1} y(x)^2 \alpha ^3+a \beta \text {$\#$1} y(x)^2 \alpha ^2+a \gamma y(x)^2 \alpha ^2-2 b \beta \text {$\#$1}^2 y(x) \alpha ^2-2 \beta c \text {$\#$1} y(x) \alpha ^2-2 b \gamma \text {$\#$1} y(x) \alpha ^2-2 c \gamma y(x) \alpha ^2-b \beta ^2 \text {$\#$1}^3 \alpha -a^2 b y(x)^3 \alpha -\beta ^2 c \text {$\#$1}^2 \alpha -2 b \beta \gamma \text {$\#$1}^2 \alpha -2 a b c y(x)^2 \alpha -2 a b^2 \text {$\#$1} y(x)^2 \alpha -b \gamma ^2 \text {$\#$1} \alpha -2 \beta c \gamma \text {$\#$1} \alpha -b c^2 y(x) \alpha -b^3 \text {$\#$1}^2 y(x) \alpha +2 a \beta ^2 \text {$\#$1}^2 y(x) \alpha -2 b^2 c \text {$\#$1} y(x) \alpha +4 a \beta \gamma \text {$\#$1} y(x) \alpha +2 a \gamma ^2 y(x) \alpha -c \gamma ^2 \alpha +\beta c^3+a \beta ^3 \text {$\#$1}^3+a^3 \beta y(x)^3+b^2 \beta c \text {$\#$1}^2-b^3 \gamma \text {$\#$1}^2+3 a \beta ^2 \gamma \text {$\#$1}^2+3 a^2 \beta c y(x)^2+2 a^2 b \beta \text {$\#$1} y(x)^2-a^2 b \gamma y(x)^2+2 b \beta c^2 \text {$\#$1}+3 a \beta \gamma ^2 \text {$\#$1}-2 b^2 c \gamma \text {$\#$1}+3 a \beta c^2 y(x)+a b^2 \beta \text {$\#$1}^2 y(x)+4 a b \beta c \text {$\#$1} y(x)-2 a b^2 \gamma \text {$\#$1} y(x)-2 a b c \gamma y(x)+a \gamma ^3-b c^2 \gamma \& ,\frac {\beta ^2 \log (x-\text {$\#$1}) \text {$\#$1}^2+2 \beta \gamma \log (x-\text {$\#$1}) \text {$\#$1}+2 \alpha \beta \log (x-\text {$\#$1}) y(x) \text {$\#$1}+\alpha ^2 \log (x-\text {$\#$1}) y(x)^2+\gamma ^2 \log (x-\text {$\#$1})+2 \alpha \gamma \log (x-\text {$\#$1}) y(x)}{b y(x)^2 \alpha ^3-a \beta y(x)^2 \alpha ^2+2 \beta c y(x) \alpha ^2+4 b \beta \text {$\#$1} y(x) \alpha ^2+2 b \gamma y(x) \alpha ^2+3 b \beta ^2 \text {$\#$1}^2 \alpha +2 a b^2 y(x)^2 \alpha +2 \beta ^2 c \text {$\#$1} \alpha +4 b \beta \gamma \text {$\#$1} \alpha +2 b^2 c y(x) \alpha +2 b^3 \text {$\#$1} y(x) \alpha -4 a \beta ^2 \text {$\#$1} y(x) \alpha -4 a \beta \gamma y(x) \alpha +b \gamma ^2 \alpha +2 \beta c \gamma \alpha -2 b \beta c^2-3 a \beta ^3 \text {$\#$1}^2-2 a^2 b \beta y(x)^2-2 b^2 \beta c \text {$\#$1}+2 b^3 \gamma \text {$\#$1}-6 a \beta ^2 \gamma \text {$\#$1}-4 a b \beta c y(x)-2 a b^2 \beta \text {$\#$1} y(x)+2 a b^2 \gamma y(x)-3 a \beta \gamma ^2+2 b^2 c \gamma }\& \right ]+\int _1^{y(x)}\left (\frac {-\beta K[1]^2 a^3+\alpha b K[1]^2 a^2-2 \beta c K[1] a^2-2 b \beta x K[1] a^2-\beta c^2 a-b^2 \beta x^2 a-2 b \beta c x a+2 \alpha b c K[1] a+2 \alpha b^2 x K[1] a+\alpha b c^2+\alpha b^3 x^2+2 \alpha b^2 c x}{c K[1]^2 \alpha ^3+b x K[1]^2 \alpha ^3-a \beta x K[1]^2 \alpha ^2-a \gamma K[1]^2 \alpha ^2+2 b \beta x^2 K[1] \alpha ^2+2 \beta c x K[1] \alpha ^2+2 b \gamma x K[1] \alpha ^2+2 c \gamma K[1] \alpha ^2+b \beta ^2 x^3 \alpha +a^2 b K[1]^3 \alpha +\beta ^2 c x^2 \alpha +2 b \beta \gamma x^2 \alpha +2 a b c K[1]^2 \alpha +2 a b^2 x K[1]^2 \alpha +b \gamma ^2 x \alpha +2 \beta c \gamma x \alpha +b c^2 K[1] \alpha +b^3 x^2 K[1] \alpha -2 a \beta ^2 x^2 K[1] \alpha +2 b^2 c x K[1] \alpha -4 a \beta \gamma x K[1] \alpha -2 a \gamma ^2 K[1] \alpha +c \gamma ^2 \alpha -\beta c^3-a \beta ^3 x^3-a^3 \beta K[1]^3-b^2 \beta c x^2+b^3 \gamma x^2-3 a \beta ^2 \gamma x^2-3 a^2 \beta c K[1]^2-2 a^2 b \beta x K[1]^2+a^2 b \gamma K[1]^2-2 b \beta c^2 x-3 a \beta \gamma ^2 x+2 b^2 c \gamma x-3 a \beta c^2 K[1]-a b^2 \beta x^2 K[1]-4 a b \beta c x K[1]+2 a b^2 \gamma x K[1]+2 a b c \gamma K[1]-a \gamma ^3+b c^2 \gamma }-\frac {(\alpha b-a \beta ) \left (-c^2-2 b x c-2 a K[1] c-b^2 x^2-a^2 K[1]^2-2 a b x K[1]\right )}{-c K[1]^2 \alpha ^3-b x K[1]^2 \alpha ^3+a \beta x K[1]^2 \alpha ^2+a \gamma K[1]^2 \alpha ^2-2 b \beta x^2 K[1] \alpha ^2-2 \beta c x K[1] \alpha ^2-2 b \gamma x K[1] \alpha ^2-2 c \gamma K[1] \alpha ^2-b \beta ^2 x^3 \alpha -a^2 b K[1]^3 \alpha -\beta ^2 c x^2 \alpha -2 b \beta \gamma x^2 \alpha -2 a b c K[1]^2 \alpha -2 a b^2 x K[1]^2 \alpha -b \gamma ^2 x \alpha -2 \beta c \gamma x \alpha -b c^2 K[1] \alpha -b^3 x^2 K[1] \alpha +2 a \beta ^2 x^2 K[1] \alpha -2 b^2 c x K[1] \alpha +4 a \beta \gamma x K[1] \alpha +2 a \gamma ^2 K[1] \alpha -c \gamma ^2 \alpha +\beta c^3+a \beta ^3 x^3+a^3 \beta K[1]^3+b^2 \beta c x^2-b^3 \gamma x^2+3 a \beta ^2 \gamma x^2+3 a^2 \beta c K[1]^2+2 a^2 b \beta x K[1]^2-a^2 b \gamma K[1]^2+2 b \beta c^2 x+3 a \beta \gamma ^2 x-2 b^2 c \gamma x+3 a \beta c^2 K[1]+a b^2 \beta x^2 K[1]+4 a b \beta c x K[1]-2 a b^2 \gamma x K[1]-2 a b c \gamma K[1]+a \gamma ^3-b c^2 \gamma }\right )dK[1]=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.048 (sec), leaf count = 115
dsolve((a*y(x)+b*x+c)^2*diff(y(x),x)+(alpha*y(x)+beta*x+gamma)^2 = 0,y(x))
\[y \left (x \right ) = \frac {\left (\left (b x +c \right ) \alpha -a \left (\beta x +\gamma \right )\right ) \operatorname {RootOf}\left (\int _{}^{\textit {\_Z}}\frac {\left (\textit {\_a} a -b \right )^{2}}{\textit {\_a}^{3} a^{2}-2 \textit {\_a}^{2} a b -\textit {\_a}^{2} \alpha ^{2}+2 \textit {\_a} \alpha \beta +\textit {\_a} \,b^{2}-\beta ^{2}}d \textit {\_a} +\ln \left (a x \beta -\alpha b x +a \gamma -\alpha c \right )+c_{1} \right )+b \gamma -\beta c}{a \beta -b \alpha }\]