2.284 ODE No. 284
\[ \left (x^2+4 y(x)^2\right ) y'(x)-x y(x)=0 \]
✓ Mathematica : cpu = 0.0837181 (sec), leaf count = 59
DSolve[-(x*y[x]) + (x^2 + 4*y[x]^2)*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -\frac {x}{2 \sqrt {W\left (\frac {1}{4} e^{-\frac {c_1}{2}} x^2\right )}}\right \},\left \{y(x)\to \frac {x}{2 \sqrt {W\left (\frac {1}{4} e^{-\frac {c_1}{2}} x^2\right )}}\right \}\right \}\]
✓ Maple : cpu = 0.141 (sec), leaf count = 21
dsolve((4*y(x)^2+x^2)*diff(y(x),x)-x*y(x) = 0,y(x))
\[y \left (x \right ) = {\mathrm e}^{\frac {\operatorname {LambertW}\left (\frac {{\mathrm e}^{2 c_{1}} x^{2}}{4}\right )}{2}-c_{1}}\]