2.27   ODE No. 27

\[ a y(x) (y(x)-x)+y'(x)-1=0 \]

Mathematica : cpu = 0.27022 (sec), leaf count = 120

DSolve[-1 + a*y[x]*(-x + y[x]) + Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to \frac {a x e^{\frac {a x^2}{2}}+c_1 \left (\sqrt {\frac {\pi }{2}} \sqrt {a} x e^{\frac {a x^2}{2}} \text {erf}\left (\frac {\sqrt {a} x}{\sqrt {2}}\right )+1\right )}{a \left (e^{\frac {a x^2}{2}}+\frac {\sqrt {\frac {\pi }{2}} c_1 e^{\frac {a x^2}{2}} \text {erf}\left (\frac {\sqrt {a} x}{\sqrt {2}}\right )}{\sqrt {a}}\right )}\right \}\right \}\]

Maple : cpu = 0.131 (sec), leaf count = 72

dsolve(diff(y(x),x)+a*y(x)*(y(x)-x)-1 = 0,y(x))
 
\[y \left (x \right ) = \frac {2 \sqrt {a}\, {\mathrm e}^{-\frac {a \,x^{2}}{2}}+x \left (\sqrt {\pi }\, \operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {a}\, x}{2}\right ) \sqrt {2}\, a +2 a^{{3}/{2}} c_{1} \right )}{\sqrt {\pi }\, \operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {a}\, x}{2}\right ) \sqrt {2}\, a +2 a^{{3}/{2}} c_{1}}\]

Hand solution

\begin{align} y^{\prime }+ay\left ( y-x\right ) -1 & =0\nonumber \\ y^{\prime } & =1-\left ( ay^{2}-ayx\right ) \nonumber \\ & =1+ayx-ay^{2}\tag {1}\end{align}

This is Riccati first order non-linear ODE \(y^{\prime }=P\left ( x\right ) +A\left ( x\right ) y+R\left ( x\right ) y^{2}\) with \(P\left ( x\right ) =1,Q\left ( x\right ) =-ax,R\left ( x\right ) =-a\). We can convert Riccati to Bernoulli which is easier to solve using the substitution \(u=y-x\)

\begin{align*} u^{\prime } & =y^{\prime }-1\\ & =\left ( 1+ayx-ay^{2}\right ) -1\\ & =\left ( 1+a\left ( u+x\right ) x-a\left ( u+x\right ) ^{2}\right ) -1\\ & =1+aux+ax^{2}-a\left ( u^{2}+x^{2}+2ux\right ) -1\\ & =1+aux+ax^{2}-au^{2}-ax^{2}-2aux-1\\ & =-aux-au^{2}\\ u^{\prime } & =-aux-au^{2}\end{align*}

This is of the form \(u^{\prime }=P\left ( x\right ) +Q\left ( x\right ) u+R\left ( x\right ) u^{2}\) and since \(P\left ( x\right ) =0\) then it is Bernoulli differential equation. (when \(P\left ( x\right ) \neq 0\) and \(R\left ( x\right ) \neq 0\) it is Riccati). To solve Bernoulli we always start by dividing by \(u^{2}\)

\[ \frac {u^{\prime }}{u^{2}}=-\frac {ax}{u}-a \]

Then we let \(\zeta =\frac {1}{u}\), hence \(\zeta ^{\prime }=-\frac {u^{\prime }}{u^{2}}\), therefore the above becomes

\begin{align*} -\zeta ^{\prime } & =-ax\zeta -a\\ \zeta ^{\prime }-ax\zeta & =a \end{align*}

Integrating factor is \(e^{-\int axdx}=e^{-a\frac {x^{2}}{2}}\), hence \(d\left ( e^{-a\frac {x^{2}}{2}}\zeta \right ) =ae^{-a\frac {x^{2}}{2}}\). Integrating both sides gives

\[ e^{-a\frac {x^{2}}{2}}\zeta =a\int e^{-a\frac {x^{2}}{2}}dx+C \]

But

\[ \int e^{-a\frac {x^{2}}{2}}dx=\sqrt {\frac {\pi }{2a}}\operatorname {erf}\left ( \sqrt {\frac {a}{2}}x\right ) \]

Therefore

\begin{align*} e^{-a\frac {x^{2}}{2}}\zeta & =a\sqrt {\frac {\pi }{2a}}\operatorname {erf}\left ( \sqrt {\frac {a}{2}}x\right ) +C\\ \zeta & =e^{a\frac {x^{2}}{2}}\left ( a\sqrt {\frac {\pi }{2a}}\operatorname {erf}\left ( \sqrt {\frac {a}{2}}x\right ) +C\right ) \end{align*}

Hence

\begin{align*} u & =\frac {1}{\zeta }\\ & =e^{-a\frac {x^{2}}{2}}\left ( a\sqrt {\frac {\pi }{2a}}\operatorname {erf}\left ( \sqrt {\frac {a}{2}}x\right ) +C\right ) ^{-1}\end{align*}

Since \(u=y-x\) then

\begin{align*} y & =u+x\\ & =e^{-a\frac {x^{2}}{2}}\left ( a\sqrt {\frac {\pi }{2a}}\operatorname {erf}\left ( \sqrt {\frac {a}{2}}x\right ) +C\right ) ^{-1}+x\\ & =\frac {e^{-a\frac {x^{2}}{2}}}{\sqrt {\frac {a\pi }{2}}\operatorname {erf}\left ( \sqrt {\frac {a}{2}}x\right ) +C}+x \end{align*}

Verification

eq:=diff(y(x),x)+a*y(x)*(y(x)-x)-1 = 0; 
sol:=exp(-a*x^2/2)/(sqrt(a*Pi/2)*erf(sqrt(a/2)*x)+_C1)+x; 
odetest(y(x)=sol,eq); 
0