2.268 ODE No. 268
\[ f(x) y(x) y'(x)+g(x) y(x)^2+h(x)=0 \]
✓ Mathematica : cpu = 0.120888 (sec), leaf count = 146
DSolve[h[x] + g[x]*y[x]^2 + f[x]*y[x]*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -\exp \left (\int _1^x-\frac {g(K[1])}{f(K[1])}dK[1]\right ) \sqrt {2 \int _1^x-\frac {\exp \left (-2 \int _1^{K[2]}-\frac {g(K[1])}{f(K[1])}dK[1]\right ) h(K[2])}{f(K[2])}dK[2]+c_1}\right \},\left \{y(x)\to \exp \left (\int _1^x-\frac {g(K[1])}{f(K[1])}dK[1]\right ) \sqrt {2 \int _1^x-\frac {\exp \left (-2 \int _1^{K[2]}-\frac {g(K[1])}{f(K[1])}dK[1]\right ) h(K[2])}{f(K[2])}dK[2]+c_1}\right \}\right \}\]
✓ Maple : cpu = 0.108 (sec), leaf count = 118
dsolve(f(x)*y(x)*diff(y(x),x)+g(x)*y(x)^2+h(x) = 0,y(x))
\[y \left (x \right ) = {\mathrm e}^{\int -\frac {2 g \left (x \right )}{f \left (x \right )}d x} \sqrt {{\mathrm e}^{2 \left (\int \frac {g \left (x \right )}{f \left (x \right )}d x \right )} \left (-2 \left (\int \frac {{\mathrm e}^{\int \frac {2 g \left (x \right )}{f \left (x \right )}d x} h \left (x \right )}{f \left (x \right )}d x \right )+c_{1} \right )}\]