2.258   ODE No. 258

\[ -2 x^3+2 x^2 y(x) y'(x)-x^2+y(x)^2=0 \]

Mathematica : cpu = 0.0778811 (sec), leaf count = 43

DSolve[-x^2 - 2*x^3 + y[x]^2 + 2*x^2*y[x]*Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to -\sqrt {x^2+c_1 e^{\frac {1}{x}}}\right \},\left \{y(x)\to \sqrt {x^2+c_1 e^{\frac {1}{x}}}\right \}\right \}\]

Maple : cpu = 0.023 (sec), leaf count = 33

dsolve(2*x^2*y(x)*diff(y(x),x)+y(x)^2-2*x^3-x^2 = 0,y(x))
 
\[y \left (x \right ) = \sqrt {{\mathrm e}^{\frac {1}{x}} c_{1} +x^{2}}\]