2.249 ODE No. 249
\[ y'(x) \left (a x y(x)+b x^n\right )+\alpha y(x)^3+\beta y(x)^2=0 \]
✓ Mathematica : cpu = 3.76303 (sec), leaf count = 115
DSolve[beta*y[x]^2 + alpha*y[x]^3 + (b*x^n + a*x*y[x])*Derivative[1][y][x] == 0,y[x],x]
\[\text {Solve}\left [\frac {(a (-n)+a+\alpha y(x)) y(x)^{\frac {a-a n}{\beta }-1} (\alpha y(x)+\beta )^{\frac {a (n-1)}{\beta }}}{a^2 (n-1)^2 (a (n-1)+\beta )}+\frac {x^{1-n} \exp \left (-\frac {a (n-1) (\log (y(x))-\log (\alpha y(x)+\beta ))}{\beta }\right )}{a b (1-n) (n-1)}=c_1,y(x)\right ]\]
✓ Maple : cpu = 0.262 (sec), leaf count = 202
dsolve((a*x*y(x)+b*x^n)*diff(y(x),x)+alpha*y(x)^3+beta*y(x)^2 = 0,y(x))
\[y \left (x \right ) = \frac {\beta }{\operatorname {RootOf}\left (-x^{1-n} \textit {\_Z}^{\frac {a \left (n -1\right )}{\beta }} a^{2} \beta n +c_{1} a^{2} b \,n^{2}+x^{1-n} \textit {\_Z}^{\frac {a \left (n -1\right )}{\beta }} a^{2} \beta -x^{1-n} \textit {\_Z}^{\frac {a \left (n -1\right )}{\beta }} a \,\beta ^{2}-\textit {\_Z}^{\frac {a n -a +\beta }{\beta }} \beta b a n +\textit {\_Z}^{\frac {a \left (n -1\right )}{\beta }} a \alpha b n -2 c_{1} a^{2} b n +c_{1} a b \beta n +\textit {\_Z}^{\frac {a n -a +\beta }{\beta }} \beta b a -\textit {\_Z}^{\frac {a \left (n -1\right )}{\beta }} a \alpha b +\textit {\_Z}^{\frac {a \left (n -1\right )}{\beta }} \alpha b \beta +c_{1} a^{2} b -c_{1} a b \beta \right ) \beta -\alpha }\]