2.235   ODE No. 235

\[ (a+x y(x)) y'(x)+b y(x)=0 \]

Mathematica : cpu = 0.0835408 (sec), leaf count = 40

DSolve[b*y[x] + (a + x*y[x])*Derivative[1][y][x] == 0,y[x],x]
 
\[\text {Solve}\left [x=-\frac {a e^{-\frac {y(x)}{b}} \text {Ei}\left (\frac {y(x)}{b}\right )}{b}+c_1 e^{-\frac {y(x)}{b}},y(x)\right ]\]

Maple : cpu = 0.06 (sec), leaf count = 30

dsolve((x*y(x)+a)*diff(y(x),x)+b*y(x) = 0,y(x))
 
\[c_{1} +\frac {1}{-{\mathrm e}^{\frac {y \left (x \right )}{b}} b x +a \,\operatorname {Ei}_{1}\left (-\frac {y \left (x \right )}{b}\right )} = 0\]