2.23 ODE No. 23
\[ a y(x)^2-b+y'(x)=0 \]
✓ Mathematica : cpu = 0.0630253 (sec), leaf count = 43
DSolve[-b + a*y[x]^2 + Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {\sqrt {b} \tanh \left (\sqrt {a} \sqrt {b} x+\sqrt {a} \sqrt {b} c_1\right )}{\sqrt {a}}\right \}\right \}\]
✓ Maple : cpu = 0.032 (sec), leaf count = 23
dsolve(diff(y(x),x)+a*y(x)^2-b = 0,y(x))
\[y \left (x \right ) = \frac {\tanh \left (\sqrt {a b}\, \left (x +c_{1} \right )\right ) \sqrt {a b}}{a}\]
Hand solution
\begin{align*} y^{\prime }+ay^{2}-b & =0\\ \frac {dy}{dx} & =b-ay^{2}\end{align*}
Separable,
\begin{align*} \frac {dy}{b-ay^{2}} & =dx\\ \int \frac {dy}{b-ay^{2}} & =\int dx \end{align*}
But
\[ \int \frac {dy}{b-ay^{2}}=\frac {1}{\sqrt {ab}}\tanh ^{-1}\left ( \sqrt {\frac {a}{b}}y\right ) \]
Hence
\begin{align*} \frac {1}{\sqrt {ab}}\tanh ^{-1}\left ( \sqrt {\frac {a}{b}}y\right ) & =x+C\\ \tanh ^{-1}\left ( \sqrt {\frac {a}{b}}y\right ) & =\sqrt {ab}\left ( x+C\right ) \\ \sqrt {\frac {a}{b}}y & =\tanh \left ( \sqrt {ab}\left ( x+C\right ) \right ) \\ y & =\sqrt {\frac {b}{a}}\tanh \left ( \sqrt {ab}\left ( x+C\right ) \right ) \end{align*}