2.218   ODE No. 218

\[ \left (y(x)-x^2\right ) y'(x)+4 x y(x)=0 \]

Mathematica : cpu = 0.100527 (sec), leaf count = 257

DSolve[4*x*y[x] + (-x^2 + y[x])*Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to x^2+\frac {1}{-\frac {1}{2 x^2}-\frac {\frac {1}{2}-\frac {i}{2}}{\sqrt {2} x^2 \sqrt {x^2 \cosh \left (\frac {2 c_1}{9}\right )+x^2 \sinh \left (\frac {2 c_1}{9}\right )-i}}}\right \},\left \{y(x)\to x^2+\frac {1}{-\frac {1}{2 x^2}+\frac {\frac {1}{2}-\frac {i}{2}}{\sqrt {2} x^2 \sqrt {x^2 \cosh \left (\frac {2 c_1}{9}\right )+x^2 \sinh \left (\frac {2 c_1}{9}\right )-i}}}\right \},\left \{y(x)\to x^2+\frac {1}{-\frac {1}{2 x^2}-\frac {\frac {1}{2}+\frac {i}{2}}{\sqrt {2} x^2 \sqrt {x^2 \cosh \left (\frac {2 c_1}{9}\right )+x^2 \sinh \left (\frac {2 c_1}{9}\right )+i}}}\right \},\left \{y(x)\to x^2+\frac {1}{-\frac {1}{2 x^2}+\frac {\frac {1}{2}+\frac {i}{2}}{\sqrt {2} x^2 \sqrt {x^2 \cosh \left (\frac {2 c_1}{9}\right )+x^2 \sinh \left (\frac {2 c_1}{9}\right )+i}}}\right \}\right \}\]

Maple : cpu = 0.442 (sec), leaf count = 57

dsolve((y(x)-x^2)*diff(y(x),x)+4*x*y(x) = 0,y(x))
 
\[y \left (x \right ) = -\frac {c_{1} \sqrt {c_{1}^{2}-4 x^{2}}}{2}+\frac {c_{1}^{2}}{2}-x^{2}\]