2.213   ODE No. 213

\[ (y(x)+1) y'(x)-y(x)-x=0 \]

Mathematica : cpu = 0.105229 (sec), leaf count = 71

DSolve[-x - y[x] + (1 + y[x])*Derivative[1][y][x] == 0,y[x],x]
 
\[\text {Solve}\left [\frac {1}{2} \log \left (\frac {x^2-y(x)^2+(x-3) y(x)-x-1}{(x-1)^2}\right )+\log (1-x)=\frac {\tanh ^{-1}\left (\frac {y(x)+2 x-1}{\sqrt {5} (y(x)+1)}\right )}{\sqrt {5}}+c_1,y(x)\right ]\]

Maple : cpu = 1.408 (sec), leaf count = 66

dsolve((1+y(x))*diff(y(x),x)-y(x)-x = 0,y(x))
 
\[-\frac {\ln \left (\frac {y \left (x \right )^{2}+\left (-x +3\right ) y \left (x \right )-x^{2}+x +1}{\left (x -1\right )^{2}}\right )}{2}-\frac {\sqrt {5}\, \operatorname {arctanh}\left (\frac {\left (-2 y \left (x \right )-3+x \right ) \sqrt {5}}{5 x -5}\right )}{5}-\ln \left (x -1\right )-c_{1} = 0\]