2.208   ODE No. 208

\[ a y(x)^2-b \cos (c+x)+y(x) y'(x)=0 \]

Mathematica : cpu = 0.180527 (sec), leaf count = 118

DSolve[-(b*Cos[c + x]) + a*y[x]^2 + y[x]*Derivative[1][y][x] == 0,y[x],x]
 
\[\left \{\left \{y(x)\to -\frac {\sqrt {4 a^2 c_1 e^{-2 a x}+4 a b \cos (c+x)+c_1 e^{-2 a x}+2 b \sin (c+x)}}{\sqrt {4 a^2+1}}\right \},\left \{y(x)\to \frac {\sqrt {4 a^2 c_1 e^{-2 a x}+4 a b \cos (c+x)+c_1 e^{-2 a x}+2 b \sin (c+x)}}{\sqrt {4 a^2+1}}\right \}\right \}\]

Maple : cpu = 0.22 (sec), leaf count = 106

dsolve(y(x)*diff(y(x),x)+a*y(x)^2-b*cos(x+c) = 0,y(x))
 
\[y \left (x \right ) = \frac {\sqrt {16 c_{1} \left (a^{2}+\frac {1}{4}\right )^{2} {\mathrm e}^{-2 a x}+16 b \left (a \cos \left (x +c \right )+\frac {\sin \left (x +c \right )}{2}\right ) \left (a^{2}+\frac {1}{4}\right )}}{4 a^{2}+1}\]