2.1940   ODE No. 1940

\[ \left \{\text {x1}'(t) \sin (\text {x2}(t))=\text {x4}(t) \sin (\text {x3}(t))+\text {x5}(t) \cos (\text {x3}(t)),\text {x2}'(t)=\text {x4}(t) \cos (\text {x3}(t))-\text {x5}(t) \sin (\text {x3}(t)),\text {x1}'(t) \cos (\text {x2}(t))+\text {x3}'(t)=a,\text {x4}'(t)-a (1-\lambda ) \text {x5}(t)=-m \sin (\text {x2}(t)) \cos (\text {x3}(t)),a (1-\lambda ) \text {x4}(t)+\text {x5}'(t)=m \sin (\text {x2}(t)) \sin (\text {x3}(t))\right \} \]

Mathematica : cpu = 0.0137651 (sec), leaf count = 0

DSolve[{Sin[x2[t]]*Derivative[1][x1][t] == Sin[x3[t]]*x4[t] + Cos[x3[t]]*x5[t], Derivative[1][x2][t] == Cos[x3[t]]*x4[t] - Sin[x3[t]]*x5[t], Cos[x2[t]]*Derivative[1][x1][t] + Derivative[1][x3][t] == a, -(a*(1 - lambda)*x5[t]) + Derivative[1][x4][t] == -(m*Cos[x3[t]]*Sin[x2[t]]), a*(1 - lambda)*x4[t] + Derivative[1][x5][t] == m*Sin[x2[t]]*Sin[x3[t]]},{x1[t], x2[t], x3[t], x4[t], x5[t]},t]
 

, could not solve

DSolve[{Sin[x2[t]]*Derivative[1][x1][t] == Sin[x3[t]]*x4[t] + Cos[x3[t]]*x5[t], Derivative[1][x2][t] == Cos[x3[t]]*x4[t] - Sin[x3[t]]*x5[t], Cos[x2[t]]*Derivative[1][x1][t] + Derivative[1][x3][t] == a, -(a*(1 - lambda)*x5[t]) + Derivative[1][x4][t] == -(m*Cos[x3[t]]*Sin[x2[t]]), a*(1 - lambda)*x4[t] + Derivative[1][x5][t] == m*Sin[x2[t]]*Sin[x3[t]]}, {x1[t], x2[t], x3[t], x4[t], x5[t]}, t]

Maple : cpu = 0. (sec), leaf count = 0

dsolve({diff(x1(t),t)*sin(x2(t)) = x4(t)*sin(x3(t))+x5(t)*cos(x3(t)), diff(x3(t),t)+diff(x1(t),t)*cos(x2(t)) = a, diff(x4(t),t)-(1-lambda)*a*x5(t) = -m*sin(x2(t))*cos(x3(t)), diff(x5(t),t)+(1-lambda)*a*x4(t) = m*sin(x2(t))*sin(x3(t)), diff(x2(t),t) = x4(t)*cos(x3(t))-x5(t)*sin(x3(t))})
 

, exception

time expired