2.1932   ODE No. 1932

\[ \left \{x'(t)=x(t) (y(t)-z(t)),y'(t)=y(t) (z(t)-x(t)),z'(t)=z(t) (x(t)-y(t))\right \} \]

Mathematica : cpu = 2.56294 (sec), leaf count = 0

DSolve[{Derivative[1][x][t] == x[t]*(y[t] - z[t]), Derivative[1][y][t] == y[t]*(-x[t] + z[t]), Derivative[1][z][t] == (x[t] - y[t])*z[t]},{x[t], y[t], z[t]},t]
 

, could not solve

DSolve[{Derivative[1][x][t] == x[t]*(y[t] - z[t]), Derivative[1][y][t] == y[t]*(-x[t] + z[t]), Derivative[1][z][t] == (x[t] - y[t])*z[t]}, {x[t], y[t], z[t]}, t]

Maple : cpu = 0. (sec), leaf count = 0

dsolve({diff(x(t),t) = x(t)*(y(t)-z(t)), diff(y(t),t) = y(t)*(z(t)-x(t)), diff(z(t),t) = z(t)*(x(t)-y(t))})
 

, result contains DESol or ODESolStruc

\[[\{x \left (t \right ) = 0\}, \{y \left (t \right ) = 0\}, \{z \left (t \right ) = c_{1}\}]\]